Biochemistry (Moscow)

, Volume 78, Issue 9, pp 1043–1047 | Cite as

Advanced glycation of cellular proteins as a possible basic component of the “master biological clock”

Phenoptosis

Abstract

During the last decade, evidence has been accumulating supporting the hypothesis that aging is genetically programmed and, therefore, precisely timed. This hypothesis poses a question: what is the mechanism of the biological clock that controls aging? Measuring the level of the advanced glycation end products (AGE) is one of the possible principles underlying the functioning of the biological clock. Protein glycation is an irreversible, non-enzymatic, and relatively slow process. Moreover, many types of cells have receptors that can measure AGE level. We propose the existence of a protein that has a lifespan comparable to that of the whole organism. Interaction of the advanced glycation end product generated from this protein with a specific AGE receptor might initiate apoptosis in a vitally important non-regenerating tissue that produces a primary juvenile hormone. This could result in the age-dependent decrease in the level of this hormone leading to aging of the organism.

Key words

biological clock aging protein glycation melatonin juvenile hormone AGE RAGE 

Abbreviations

AGE

Advanced Glycation End products

GRH

gonadotropin-releasing hormone

mROS

mitochondrial reactive oxygen species

RAGE

receptors of AGE

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Skulachev, V. P. (1997) Biochemistry (Moscow), 62, 1191–1195.Google Scholar
  2. 2.
    Skulachev, V. P. (1999) Biochemistry (Moscow), 64, 1418–1426.Google Scholar
  3. 3.
    Longo, V. D., Mitteldorf, J., and Skulachev, V. P. (2005) Nat. Rev. Gen., 6, 866–872.CrossRefGoogle Scholar
  4. 4.
    Skulachev, V. P. (2012) Biochemistry (Moscow), 77, 689–706.CrossRefGoogle Scholar
  5. 5.
    Dilman, V. M. (1978) Mech. Ageing. Dev., 8, 153–173.PubMedCrossRefGoogle Scholar
  6. 6.
    Dilman, V. M. (1982) Master Biological Clock [Russian translation], Znanie, Moscow.Google Scholar
  7. 7.
    Comfort, A. (1979) The Biology of Senescence, 3rd Edn., Elsevier, New York.Google Scholar
  8. 8.
    George, J. C., Bada, J., Zeh, J., Scott, L., Brown, S. E., O’Hara, T., and Suydam, R. (1999) Can. J. Zool., 77, 571–580.Google Scholar
  9. 9.
    Sivan, S. S., Van El, B., Merkher, Y., Schmelzer, C. E., Zuurmond, A. M., Heinz, A., Wachtel, E., Varga, P. P., Lazary, A., Brayda-Bruno, M., and Maroudas, A. (2012) Biochim. Biophys. Acta, 1820, 1671–1677.PubMedCrossRefGoogle Scholar
  10. 10.
    Robinson, A. B., and Robinson, N. E. (1991) Proc. Natl. Acad. Sci. USA, 88, 8880–8884.PubMedCrossRefGoogle Scholar
  11. 11.
    Robinson, N. E., and Robinson, A. B. (2004) Mech. Ageing. Dev., 125, 259–267.PubMedCrossRefGoogle Scholar
  12. 11a.
    Robinson, N. E., and Robinson, A. B. (2004) Molecular Clocks: Deamination of Asparaginyl and Glutaminyl Residues in Peptides and Proteins, Althouse Press, Cave Junction, Oregon (http://book.deamidation.org/MolecularClocks.pdf).Google Scholar
  13. 12.
    Robinson, N. E., and Robinson, A. B. (2001) Proc. Natl. Acad. Sci. USA, 98, 4367–4372.PubMedCrossRefGoogle Scholar
  14. 13.
    Krautwald, M., and Munch, G. (2010) Exp. Gerontol., 45, 744–751.PubMedCrossRefGoogle Scholar
  15. 14.
    Biemel, K. M., Friedl, D. A., and Lederer, M. O. (2002) J. Biol. Chem., 277, 24907–24915.PubMedCrossRefGoogle Scholar
  16. 15.
    Maillard, L. (1912) C. R. Hebd. Seances Acad. Sci., 154, 66–68.Google Scholar
  17. 16.
    Hodge, J. E. (1953) J. Agr. Food Chem., 1, 928–943.CrossRefGoogle Scholar
  18. 17.
    Munch, G., Schicktanz, D., Behme, A., Gerlach, M., Riederer, P., Palm, D., and Schinzel, R. (1999) Nat. Biotechnol., 17, 1006–1010.PubMedCrossRefGoogle Scholar
  19. 18.
    Monnier, V. M., Stevens, V. J., and Cerami, A. (1981) Prog. Food Nutr. Sci., 5, 315–327.PubMedGoogle Scholar
  20. 19.
    Dyer, D. G., Dunn, J. A., Thorpe, S. R., Bailie, K. E., Lyons, T. J., McCance, D. R., and Baynes, J. W. (1993) J. Clin. Invest., 91, 2463–2469.PubMedCrossRefGoogle Scholar
  21. 20.
    Sell, D. R., Kleinman, N. R., and Monnier, V. M. (2000) FASEB J., 14, 145–156.PubMedGoogle Scholar
  22. 21.
    DeGroot, J., Verzijl, N., Wenting-Van Wijk, M. J., Bank, R. A., Lafeber, F. P., Bijlsma, J. W., and TeKoppele, J. M. (2001) Arthritis Rheum., 44, 2562–2571.PubMedCrossRefGoogle Scholar
  23. 22.
    Araki, N., Ueno, N., Chakrabarti, B., Morino, Y., and Horiuchi, S. (1992) J. Biol. Chem., 267, 10211–10214.PubMedGoogle Scholar
  24. 23.
    Frye, E. B., Degenhardt, T. P., Thorpe, S. R., and Baynes, J. W. (1998) J. Biol. Chem., 273, 18714–18719.PubMedCrossRefGoogle Scholar
  25. 24.
    Schleicher, E. D., Wagner, E., and Nerlich, A. G. (1997) J. Clin. Invest., 99, 457–468.PubMedCrossRefGoogle Scholar
  26. 25.
    Simm, A., Wagner, J., Gursinsky, T., Nass, N., Friedrich, I., Schinzel, R., Czeslik, E., Silber, R. E., and Scheubel, R. J. (2007) Exp. Gerontol., 42, 668–675.PubMedCrossRefGoogle Scholar
  27. 26.
    Corman, B., Duriez, M., Poitevin, P., Heudes, D., Bruneval, P., Tedgui, A., and Levy, B. I. (1998) Proc. Natl. Acad. Sci. USA, 95, 1301–1306.PubMedCrossRefGoogle Scholar
  28. 27.
    Basta, G. (2008) Atherosclerosis, 196, 9–21.PubMedCrossRefGoogle Scholar
  29. 28.
    Ramsgaard, L., Englert, J. M., Manni, M. L., Milutinovic, P. S., Gefter, J., Tobolewski, J., Crum, L., Coudriet, G. M., Piganelli, J., Zamora, R., Vodovotz, Y., Enghild, J. J., and Oury, T. D. (2011) PLoS One, 6, e20132.PubMedCrossRefGoogle Scholar
  30. 29.
    Singh, R., Barden, A., Mori, T., and Beilin, L. (2001) Diabetologia, 44, 129–146.PubMedCrossRefGoogle Scholar
  31. 30.
    Lander, H. M., Tauras, J. M., Ogiste, J. S., Hori, O., Moss, R. A., and Schmidt, A. M. (1997) J. Biol. Chem., 272, 17810–17814.PubMedCrossRefGoogle Scholar
  32. 31.
    Anisimov, V. N. (2003) Molecular and Physiological Mechanisms of Aging [in Russian], 1st Edn., Nauka, St. Petersburg.Google Scholar
  33. 32.
    Anisimov, V. N., Popovich, I. G., Zabezhinski, M. A., Anisimov, S. V., Vesnushkin, G. M., and Vinogradova, I. A. (2006) Biochim. Biophys. Acta, 1757, 573–589.PubMedCrossRefGoogle Scholar
  34. 33.
    Karasek, M. (2007) J. Physiol. Pharmacol., 58, 105–113.PubMedGoogle Scholar
  35. 34.
    Pierpaoli, W., and Bulian, D. (2005) Ann. N. Y. Acad. Sci., 1057, 133–144.PubMedCrossRefGoogle Scholar
  36. 35.
    Skulachev, V. P., Severin, F. F., and Feniouk, B. A. (2013) Life without Aging [in Russian], EKSMO, Moscow (in print).Google Scholar
  37. 36.
    Severin, F. F., and Skulachev, V. P. (2009) Uspekhi Gerontol., 22, 37–48.Google Scholar
  38. 37.
    Zhang, G., Li, J., Purkayastha, S., Tang, Y., Zhang, H., Yin, Y., Li, B., Liu, G., and Cai, D. (2013) Nature, 497, 211–216.PubMedCrossRefGoogle Scholar
  39. 38.
    Namiki, M. (1988) Adv. Food Res., 32, 115–184.PubMedCrossRefGoogle Scholar
  40. 39.
    Dworkin, J. P., and Miller, S. L. (2000) Carbohydrate Res., 329, 359–365.CrossRefGoogle Scholar
  41. 40.
    Swamy, M. S., Tsai, C., Abraham, A., and Abraham, E. C. (1993) Exp. Eye Res., 56, 177–185.PubMedCrossRefGoogle Scholar
  42. 41.
    Ledesma-Osuna, A. I., Ramos-Clamont, G., and Vazquez-Moreno, L. (2008) Acta Biochim. Polon., 55, 491–497.PubMedGoogle Scholar
  43. 42.
    Song, X., Bao, M. M., Li, D. D., and Li, Y. M. (1999) Mech. Ageing Dev., 108, 239–251.PubMedCrossRefGoogle Scholar
  44. 43.
    Liang, Y. X., Wang, Z., Li, D. D., Jiang, J. M., and Shao, R. G. (2003) Biomed. Environ. Sci., 16, 323–332.PubMedGoogle Scholar
  45. 44.
    Deng, H. B., Cheng, C. L., Cui, D. P., Li, D. D., Cui, L., and Cai, N. S. (2006) Biomed. Environ. Sci., 19, 432–438.PubMedGoogle Scholar
  46. 45.
    Lu, J., Wu, D. M., Zheng, Y. L., Hu, B., and Zhang, Z. F. (2010) Brain Pathol., 20, 598–612.PubMedCrossRefGoogle Scholar
  47. 46.
    Mao, G. X., Deng, H. B., Yuan, L. G., Li, D. D., Li, Y. Y., and Wang, Z. (2010) Biomed. Environ. Sci., 23, 161–166.PubMedCrossRefGoogle Scholar
  48. 47.
    Bujak-Gizycka, B., Suski, M., Olszanecki, R., Madej, J., and Korbut, R. (2009) Folia Medica Cracoviensia, 50, 21–33 (Polish).PubMedGoogle Scholar
  49. 48.
    Anisimov, V. N. (2008) Molecular and Physiological Mechanisms of Aging [in Russian], 2nd Edn., Nauka, St. Petersburg.Google Scholar
  50. 49.
    Stern, D., Yan, S. D., Yan, S. F., and Schmidt, A. M. (2002) Adv. Drug. Deliv. Rev., 54, 1615–1625.PubMedCrossRefGoogle Scholar
  51. 50.
    Sims, G. P., Rowe, D. C., Rietdijk, S. T., Herbst, R., and Coyle, A. J. (2010) Annu. Rev. Immunol., 28, 367–388.PubMedCrossRefGoogle Scholar
  52. 51.
    Nielsen, J. M., Kristiansen, S. B., Norregaard, R., Andersen, C. L., Denner, L., Nielsen, T. T., Flyvbjerg, A., and Botker, H. E. (2009) Eur. J. Heart Fail, 11, 638–647.PubMedCrossRefGoogle Scholar
  53. 52.
    Kim, J., Wan, C. K., O’Carroll, S. J., Shaikh, S. B., and Nicholson, L. F. B. (2012) J. Neurosci. Res., 90, 1136–1147.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • F. F. Severin
    • 1
    • 2
  • B. A. Feniouk
    • 2
    • 3
  • V. P. Skulachev
    • 1
    • 2
    • 3
  1. 1.Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia
  2. 2.Institute of MitoengineeringLomonosov Moscow State UniversityMoscowRussia
  3. 3.Faculty of Bioengineering and BioinformaticsLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations