Advertisement

Biochemistry (Moscow)

, Volume 78, Issue 9, pp 1001–1005 | Cite as

Phenoptosis as genetically determined aging influenced by signals from the environment

  • A. V. KhalyavkinEmail author
Phenoptosis

Abstract

Aging is a complex and not well understood process. Two opposite concepts try to explain its causes and mechanisms — programmed aging and aging of “wear and tear” (stochastic aging). To date, much evidence has been obtained that contradicts the theories of aging as being due to accumulation of various damages. For example, creation of adequate conditions for the functioning of the organism’s components (appropriate microenvironment, humoral background, etc.) has been shown to cause partial or complete reversibility of signs of its aging. Programmed aging and death of an organism can be termed phenoptosis by analogy to the term apoptosis for programmed cell death (this term was first suggested by V. P. Skulachev). The necessity of this phenomenon, since A. Weismann, has been justified by the need for population renewal according to ecological and evolutionary requirements. Species-specific lifespan, age-dependent changes in expression pattern of genes, etc. are compatible with the concept of phenoptosis. However, the intraspecific rate of aging was shown to vary over of a wide range depending on living conditions. This means that the “aging program” is not set rigidly; it sensitively adjusts an individual to the specific realities of its habitat. Moreover, there are indications that in rather severe conditions of natural habitat the aging program can be completely cancelled, as the need for it disappears because of the raised mortality from external causes (high extrinsic mortality), providing fast turnover of the population.

Key words

aging plasticity environmental influences origin of aging retarded senescence self-maintenance reversibility of senescence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Williams, G. C. (1957) Evolution, 11, 398–411.CrossRefGoogle Scholar
  2. 2.
    Milewski, L. A. K. (2010) Biosci. Horizons, 3, 77–84.CrossRefGoogle Scholar
  3. 3.
    Ahlenius, H., Visan, V., Kokaia, M., Lindvall, O., and Kokaia, Z. (2009) J. Neurosci., 29, 4408–4419.PubMedCrossRefGoogle Scholar
  4. 4.
    Mayack, S. R., Shadrach, J. L., Kim, F. S., and Wagers, A. J. (2010) Nature, 463, 495–500.PubMedCrossRefGoogle Scholar
  5. 5.
    Han, J., Mistriotis, P., Lei, P., Wang, D., Liu, S., and Andreadis, S. T. (2012) Stem Cells, 30, 2746–2759.PubMedCrossRefGoogle Scholar
  6. 6.
    Rando, T. A., and Chang, H. Y. (2012) Cell, 148, 46–57.PubMedCrossRefGoogle Scholar
  7. 7.
    Olovnikov, A. M. (2005) Ann. N. Y. Acad. Sci., 1057, 112–132.PubMedCrossRefGoogle Scholar
  8. 8.
    Khokhlov, A. N. (2010) Radiats. Biol. Radioekol., 50, 304–311.Google Scholar
  9. 9.
    Khokhlov, A. N. (2010) Biophysics (Moscow), 55, 859–864.CrossRefGoogle Scholar
  10. 10.
    Katsara, O., Mahaira, L. G., Iliopoulou, E. G., Mustaki, A., Antsaklis, A., Loutradis, D., Stefanidis, K., Baxevanis, C. N., Papamichail, M., and Perez, S. A. (2011) Stem Cells Dev., 20, 1549–1561.PubMedCrossRefGoogle Scholar
  11. 11.
    Skulachev, V. P. (1999) Biochemistry (Moscow), 64, 1418–1426.Google Scholar
  12. 12.
    Skulachev, V. P. (2012) Biochemistry (Moscow), 77, 689–706.CrossRefGoogle Scholar
  13. 13.
    Lamb, M. J. (1977) Biology of Ageing, Blackie, Glasgow.Google Scholar
  14. 14.
    De Magalhães, J. P. (2012) FASEB J., 26, 4821–4826.PubMedCrossRefGoogle Scholar
  15. 15.
    Tomás-Loba, A., Flores, I., Fernández-Marcos, P. J., Cayuela, M. L., Maraver, A., Tejera, A., Borrás, C., Matheu, A., Klatt, P., Flores, J. M., Viña, J., Serrano, M., and Blasco, M. A. (2008) Cell, 135, 609–622.PubMedCrossRefGoogle Scholar
  16. 16.
    Izmaylov, D. M., and Obukhova, L. K. (1996) Mech. Ageing Dev., 91, 155–164.PubMedCrossRefGoogle Scholar
  17. 17.
    Orr, W. C., and Sohal, R. S. (2003) Exp. Gerontol., 38, 227–230.PubMedCrossRefGoogle Scholar
  18. 18.
    Anisimov, V. N., Bakeeva, L. E., Egormin, P. A., Filenko, O. F., Isakova, E. F., Manskikh, V. N., Mikhelson, V. M., Panteleeva, A. A., Pasyukova, E. G., Pilipenko, D. I., Piskunova, T. S., Popovich, I. G., Roshchina, N. V., Rybina, O. Yu., Saprunova, V. B., Samoylova, T. A., Semenchenko, A. V., Skulachev, M. V., Spivak, I. M., Tsybul’ko, E. A., Tyndyk, M. L., Vyssokikh, M. Yu., Yurova, M. N., Zabezhinsky, M. A., and Skulachev, V. P. (2008) Biochemistry (Moscow), 73, 1329–1342.CrossRefGoogle Scholar
  19. 19.
    Olovnikov, A. M. (2003) Biochemistry (Moscow), 68, 2–33.CrossRefGoogle Scholar
  20. 20.
    Linnane, A. W., and Eastwood, H. (2006) Ann. N. Y. Acad. Sci., 1067, 47–55.PubMedCrossRefGoogle Scholar
  21. 21.
    Packer, L., and Fuehr, K. (1977) Nature, 267, 423–425.PubMedCrossRefGoogle Scholar
  22. 22.
    Bell, E. L., Klimova, T. A., Eisenbart, J., Schumacker, P. T., and Chandel, N. S. (2007) Mol. Cell Biol., 27, 5737–5745.PubMedCrossRefGoogle Scholar
  23. 23.
    Anisimov, V. N., Khavinson, V. Kh., Morozov, V. G., and Dilman, V. M. (1973) Doklady AN SSSR, 213, 483–485.Google Scholar
  24. 24.
    Frolkis, V. V., Gorban, E. N., and Koltover, V. K. (1985) Doklady AN SSSR, 284, 499–502.Google Scholar
  25. 25.
    Burlakova, E. B. (1967) Biofizika, 12, 82–88.PubMedGoogle Scholar
  26. 26.
    Turpaev, K. T. (2002) Biochemistry (Moscow), 67, 281–292.CrossRefGoogle Scholar
  27. 27.
    Dröge, W. (2002) Physiol. Rev., 82, 47–95.PubMedGoogle Scholar
  28. 28.
    Jankov, R. P., Negus, A., and Tanswell, A. K. (2001) Pediatric Res., 50, 681–687.CrossRefGoogle Scholar
  29. 29.
    Bodnar, A. G., Ouellette, M., Frolkis, M., Holt, S. E., Chiu, C. P., Morin, G. B., Harley, C. B., Shay, J. W., Lichtsteiner, S., and Wright, W. E. (1998) Science, 279, 349–352.PubMedCrossRefGoogle Scholar
  30. 30.
    Vaziri, H., and Benchimol, S. (1998) Curr. Biol., 8, 279–282.PubMedCrossRefGoogle Scholar
  31. 31.
    Sharma, H. W., Sokoloski, J. A., Perez, J. R., Maltese, J. Y., Sartorelli, A. C., Stein, C. A., Nichols, G., Khaled, Z., Telang, N. T., and Narayanan, R. (1995) Proc. Natl. Acad. Sci. USA, 92, 12343–12346.PubMedCrossRefGoogle Scholar
  32. 32.
    Kruk, P. A., Balajee, A. S., Rao, K. S., and Bohr, V. A. (1996) Biochem. Biophys. Res. Commun., 224, 487–492.PubMedCrossRefGoogle Scholar
  33. 33.
    Zhang, W., Piatyszek, M. A., Kobayashi, T., Estey, E., Andreeff, M., Deisseroth, A. B., Wright, W. E., and Shay, J. W. (1996) Clin. Cancer Res., 2, 799–803.PubMedGoogle Scholar
  34. 34.
    Reichman, T. W., Albanell, J., Wang, X., Moore, M. A., and Studzinski, G. P. (1997) J. Cell. Biochem., 67, 13–23.PubMedCrossRefGoogle Scholar
  35. 35.
    Yamada, O., Takanashi, M., Ujihara, M., and Mizoguchi, H. (1998) Leuk. Res., 22, 711–717.PubMedCrossRefGoogle Scholar
  36. 36.
    Xu, D., Gruber, A., Björkholm, M., Peterson, C., and Pisa, P. (1999) Br. J. Cancer, 80, 1156–1161.PubMedCrossRefGoogle Scholar
  37. 37.
    Coppola, J. A., and Cole, M. D. (1986) Nature, 320, 760–763.PubMedCrossRefGoogle Scholar
  38. 38.
    Dmitrovsky, E., Kuehl, W. M., Hollis, G. F., Kirsch, I. R., Bender, T. P., and Segal, S. (1986) Nature, 322, 748–750.PubMedCrossRefGoogle Scholar
  39. 39.
    Prochownik, E. V., and Kukowska, J. (1986) Nature, 322, 848–850.PubMedCrossRefGoogle Scholar
  40. 40.
    Schwab, M., and Bishop, J. M. (1988) Proc. Natl. Acad. Sci. USA, 85, 9585–9589.PubMedCrossRefGoogle Scholar
  41. 41.
    Khalyavkin, A. V. (1998) Uspekhi Gerontol., 2, 43–48.Google Scholar
  42. 42.
    Khaliavkin, A. V. (2001) Adv. Gerontol., 7, 46–49.PubMedGoogle Scholar
  43. 43.
    Khalyavkin, A. V., and Yashin, A. I. (2007) in Gerontology in silico: Appearance of a New Discipline. Mathematical Models, Data Analysis and Computational Experiments (Marchuk, G. I., Anisimov, V. N., Romaniukha, A. A., and Yashin, A. I., eds.) [in Russian], BINOM, Moscow, pp. 114–147.Google Scholar
  44. 44.
    Khalyavkin, A. V., and Yashin, A. I. (2007) Ann. N. Y. Acad. Sci., 1119, 306–309.PubMedCrossRefGoogle Scholar
  45. 45.
    Khalyavkin, A. V. (2010) Radiats. Biol. Radioekol., 50, 300–303.Google Scholar
  46. 46.
    Khalyavkin, A. V. (2010) Rejuvenation Res., 13, 319–321.PubMedCrossRefGoogle Scholar
  47. 47.
    Conboy, I. M., Conboy, M. J., Wagers, A. J., Girma, E. R., Weissman, I. L., and Rando, T. A. (2005) Nature, 433, 760–764.PubMedCrossRefGoogle Scholar
  48. 48.
    Adler, A. S., Kawahara, T. L., Segal, E., and Chang, H. Y. (2008) Cell Cycle, 7, 556–559.PubMedCrossRefGoogle Scholar
  49. 49.
    Zhang, C., and Cuervo, A. M. (2008) Nat. Med., 14, 959–965.PubMedCrossRefGoogle Scholar
  50. 50.
    Cousin, W., Ho, M. L., Desai, R., Tham, A., Chen, R. Y., Kung, S., Elabd, C., and Conboy, I. M. (2013) PLoS One, 8, e63528.PubMedCrossRefGoogle Scholar
  51. 51.
    Vaupel, J. W., Baudisch, A., Dolling, M., Roach, D. A., and Gampe, J. (2004) Theor. Popul. Biol., 65, 339–351.PubMedCrossRefGoogle Scholar
  52. 52.
    Dilman, V. M. (1971) Lancet, 1, 1211–1219.PubMedCrossRefGoogle Scholar
  53. 53.
    Butenko, G. M. (1990) Vestnik AMN SSSR, 1, 20–23.Google Scholar
  54. 54.
    Apfeld, J., and Kenyon, C. (1999) Nature, 402, 804–809.PubMedCrossRefGoogle Scholar
  55. 55.
    Alcedo, J., and Kenyon, C. (2004) Neuron, 41, 45–55.PubMedCrossRefGoogle Scholar
  56. 56.
    Libert, S., Zwiener, J., Chu, X., Vanvoorhies, W., Roman, G., and Pletcher, S. D. (2007) Science, 315, 1133–1137.PubMedCrossRefGoogle Scholar
  57. 57.
    Seymour, R. M., and Doncaster, C. P. (2007) PLoS Comput. Biol., 3, e256.PubMedCrossRefGoogle Scholar
  58. 58.
    Ayyadevara, S., Alla, R., Thaden, J. J., and Shmookler Reis, R. J. (2008) Aging Cell, 7, 13–22.PubMedCrossRefGoogle Scholar
  59. 59.
    Yoshida, K., Fujisawa, T., Hwang, J. S., Ikeo, K., and Gojobori, T. (2006) Gene, 385, 64–70.PubMedCrossRefGoogle Scholar
  60. 60.
    Strehler, B. L., and Mildvan, A. S. (1960) Science, 132, 14–21.PubMedCrossRefGoogle Scholar
  61. 61.
    Strehler, B. L. (1962) Time, Cells and Aging, Academic Press, New York.Google Scholar
  62. 62.
    Kuznetsov, L. V., Mamaev, V. B., and Yershova, D. A. (2009) Uspekhi Gerontol., 22, 548–552.Google Scholar
  63. 63.
    Oeppen, J., and Vaupel, J. W. (2002) Science, 296, 1029–1031.PubMedCrossRefGoogle Scholar
  64. 64.
    Khalyavkin, A. V. (1983) in Problems of Biology of Aging (aMalinovsky, A. A., ed.) [in Russian], Nauka, Moscow, pp. 49–55.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Emanuel Institute of Biochemical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Institute for Systems AnalysisRussian Academy of SciencesMoscowRussia

Personalised recommendations