Biochemistry (Moscow)

, Volume 78, Issue 7, pp 823–835 | Cite as

Polypotency of the immunomodulatory effect of pectins

  • S. V. PopovEmail author
  • Yu. S. Ovodov


Pectins are the major component of plant cell walls, and they display diverse biological activities including immunomodulation. The pectin macromolecule contains fragments of linear and branched regions of polysaccharides such as homogalacturonan, rhamnogalacturonan-I, xylogalacturonan, and apiogalacturonan. These structural features determine the effect of pectins on the immune system. The backbones of pectic macromolecules have immunosuppressive activity. Pectins containing greater than 80% galacturonic acid residues were found to decrease macrophage activity and inhibit the delayed-type hypersensitivity reaction. Branched galacturonan fragments result in a biphasic immunomodulatory action. The branched region of pectins mediates both increased phagocytosis and antibody production. The fine structure of the galactan, arabinan, and apiogalacturonan side chains determines the stimulating interaction between pectin and immune cells. This review summarizes data regarding the relationship between the structure and immunomodulatory activity of pectins isolated from the plants of the European north of Russia and elucidates the concept of polypotency of pectins in native plant cell walls to both stimulate and suppress the immune response. The possible mechanisms of the immunostimulatory and anti-inflammatory effects of pectins are also discussed.

Key words

pectic polysaccharides structure-activity relations immunomodulatory effect polypotency 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ovodov, Yu. S. (2009) Russ. J. Bioorg. Chem., 35, 269–284.CrossRefGoogle Scholar
  2. 2.
    Popper, Z. A. (2008) Curr. Opin. Plant Biol., 11, 286–292.PubMedCrossRefGoogle Scholar
  3. 3.
    Cabrera, J. C., Boland, A., Messiaen, J., Cambier, P., and Cutsen, P. V. (2008) Glycobiology, 18, 473–482.PubMedCrossRefGoogle Scholar
  4. 4.
    Linseisen, J., Schulze, M. B., Saadatian-Elahi, M., Kroke, A., Miller, A. B., and Boeing, H. (2003) Ann. Nutr. Metab., 47, 37–46.PubMedCrossRefGoogle Scholar
  5. 5.
    Ungar, P. S., and Sponheimer, M. (2011) Science, 334, 190–193.PubMedCrossRefGoogle Scholar
  6. 6.
    Kurup, P. A., Jayakumari, N., and Indira, M. (1984) Am. J. Clin. Nutr., 40, 942–946.PubMedGoogle Scholar
  7. 7.
    Ross, J. K., Pusateri, D. J., and Shultz, T. D. (1990) Am. J. Clin. Nutr., 51, 365–370.PubMedGoogle Scholar
  8. 8.
    Loenko, Yu. N., Artyukov, A. A., Kozlovskaya, E. P., Miroshnichenko, V. A., and Elyakov, G. B. (1997) Zosterin [in Russian], Dalnauka, Vladivostok.Google Scholar
  9. 9.
    Komisarenko, S. N., and Spiridonov, V. N. (1998) Plant Resources, 34, 111–119.Google Scholar
  10. 10.
    Khotimchenko, Yu. S., Odintsova, M. V., and Kovalev, V. V. (2001) Polysorbovite [in Russian], NTL Press, Tomsk.Google Scholar
  11. 11.
    Buisseret, P. (1980) Am. J. Clin. Nutr., 33, 865–871.PubMedGoogle Scholar
  12. 12.
    Nie, Y., Li, Y., and Wu, H. (1999) Helicobacter, 4,128–134.PubMedCrossRefGoogle Scholar
  13. 13.
    Rabbani, G. H., Tera, T., and Zaman, B. (2001) Gastroenterology, 21, 554–560.CrossRefGoogle Scholar
  14. 14.
    Guess, B. W., Scholz, M. C., Strum, S. B., Lam, R. Y., Johnson, H. J., and Jennrich, R. I. (2003) Prost. Canc. Prost. Dis., 6, 301–304.CrossRefGoogle Scholar
  15. 15.
    Kobayashi, M., Matsushita, H., Yoshida, K., Tsukiyama, R., Sugimura, T., and Yamamoto, K. (2004) Int. J. Mol. Med., 14, 879–884.PubMedGoogle Scholar
  16. 16.
    Kobayashi, M., Matsushita, H., Tsukiama, R. I., Saito, M., and Sugita, T. (2005) Int. J. Mol. Med., 15, 463–467.PubMedGoogle Scholar
  17. 17.
    Knaup, B., Kempf, M., Fuchs, A., Valotis, A., Kahle, K., Oehme, A., Richling, E., and Schreier, P. (2008) Mol. Nutr. Fd. Res., 52, 840–848.CrossRefGoogle Scholar
  18. 18.
    Gulfi, M., Arrigoni, E., and Amado, R. (2007) Carbohydr. Polym., 67, 410–416.CrossRefGoogle Scholar
  19. 19.
    Voragen, A. G. J., Coenen, G. J., Verhoef, R. P., and Schols, H. A. (2009) Struct. Chem., 20, 263–275.CrossRefGoogle Scholar
  20. 20.
    Coenen, G. J., Bakx, E. J., Verhoef, R. P., Schols, H. A., and Voragen, A. G. J. (2007) Carbohydr. Polym., 70, 224–235.CrossRefGoogle Scholar
  21. 21.
    Caffall, K. H., and Mohnen, D. (2009) Carbohydr. Res., 344, 1879–1900.PubMedCrossRefGoogle Scholar
  22. 22.
    Round, A. N., Rigby, N. M., MacDougall, A. J., and Morris, V. J. (2010) Carbohydr. Res., 345, 487–497.PubMedCrossRefGoogle Scholar
  23. 23.
    Ovodov, Yu. S., Golovchenko, V. V., Gunter, E. A., and Popov, S. V. (2009) Pectic Substances of Plants of the European North of Russia [in Russian], UrB RAS, Yekaterinburg.Google Scholar
  24. 24.
    Ovodova, R. G., Bushneva, O. A., Golovchenko, V. V., Popov, S. V., and Ovodov, Yu. S. (2000) RF Patent No. 2149642, Byul. Izobret., No. 15.Google Scholar
  25. 25.
    Polle, A. Ya., Ovodova, R. G., and Ovodov, Yu. S. (2001) RF Patent No. 2176515, Byul. Izobret., No. 34.Google Scholar
  26. 26.
    Ovodova, R. G., Bushneva, O. A., Shashkov, A. S., Chizhov, A. O., and Ovodov, Yu. S. (2005) Biochemistry (Moscow), 70, 867–877.CrossRefGoogle Scholar
  27. 27.
    Ovodova, R. G., Popov, S. V., Bushneva, O. A., Golovchenko, V. V., Chizhov, A. O., Klinov, D. V., and Ovodov, Yu. S. (2006) Biochemistry (Moscow), 71, 538–542.CrossRefGoogle Scholar
  28. 28.
    Polle, A. Ya., Ovodova, R. G., Shashkov, A. S., and Ovodov, Yu. S. (2002) Carbohydr. Polym., 49, 337–344.CrossRefGoogle Scholar
  29. 29.
    Ovodova, R. G., Bushneva, O. A., Shashkov, A. S., and Ovodov, Yu. S. (2000) Bioorg. Khim., 26, 686–692.PubMedGoogle Scholar
  30. 30.
    Bushneva, O. A., Ovodova, R. G., Shashkov, A. S., and Ovodov, Yu. S. (2002) Carbohydr. Polym., 49, 471–478.CrossRefGoogle Scholar
  31. 31.
    Ovodova, R. G., Golovchenko, V. V., Shashkov, A. S., Popov, S. V., and Ovodov, Yu. S. (2000) Russ. J. Bioorg. Chem., 26, 61–67.Google Scholar
  32. 32.
    Golovchenko, V. V., Ovodova, R. G., Shashkov, A. S., and Ovodov, Yu. S. (2002) Phytochemistry, 60, 89–97.PubMedCrossRefGoogle Scholar
  33. 33.
    Aspinall, G. O. (1982) The Polysaccharides, Academic Press Inc., London.Google Scholar
  34. 34.
    Thibault, J. F., Renard, C. M. G. C., Axelos, M. A. V., Roger, P., and Crepeau, M. J. (1993) Carbohydr. Res., 238, 271–286.CrossRefGoogle Scholar
  35. 35.
    Ovodova, R. G., Golovchenko, V. V., Popov, S. V., Popova, G. Yu., Paderin, N. M., Shashkov, A. S., and Ovodov, Yu. S. (2009) Food Chem., 114, 610–615.CrossRefGoogle Scholar
  36. 36.
    Popov, S. V., Popova, G. Yu., Koval, O. A., Paderin, N. M., Ovodova, R. G., and Ovodov, Yu. S. (2007) Phytother. Res., 21, 609–614.PubMedCrossRefGoogle Scholar
  37. 37.
    Popov, S. V., Markov, P. A., Nikitina, I. R., Petrishev, S., Smirnov, V., and Ovodov, Yu. S. (2006) World J. Gastroenterol., 12, 6646–6651.PubMedGoogle Scholar
  38. 38.
    Popov, S. V., Vinter, V. G., Patova, O. A., Markov, P. A., Nikitina, I. R., Ovodova, R. G., Popova, G. Yu., Shashkov, A. S., and Ovodov, Yu. S. (2007) Biochemistry (Moscow), 72, 778–784.CrossRefGoogle Scholar
  39. 39.
    Popov, S. V., Ovodova, R. G., Golovchenko, V. V., Popova, G. Yu., Viatyasev, F. V., Shashkov, A. S., and Ovodov, Yu. S. (2011) Food Chem., 124, 309–315.CrossRefGoogle Scholar
  40. 40.
    Phatak, L., Chang, K. C., and Brown, G. (1988) J. Fd. Sci., 53, 830–833.CrossRefGoogle Scholar
  41. 41.
    Mesbahi, G., Jamalian, J., and Farahnaky, A. (2005) Fd. Hydrocoll., 19, 731–738.CrossRefGoogle Scholar
  42. 42.
    Ptichkina, N. M., Markina, O. A., and Rumyantseva, G. N. (2008) Fd. Hydrocoll., 22, 192–195.CrossRefGoogle Scholar
  43. 43.
    Popov, S. V., Markov, P. A., Popova, G. Yu., Nikitina, I. R., Efimova, E., and Ovodov, Yu. S. (2013) Biomed. Prevent. Nutr., 3, 59–63.CrossRefGoogle Scholar
  44. 44.
    Chen, C. H., Sheu, M. T., Chen, T. F., Wang, Y. C., Hon, W. C., Liu, D. Z., Chung, T. C., and Liang, Y. C. (2006) Biochem. Pharmacol., 72, 1001–1009.PubMedCrossRefGoogle Scholar
  45. 45.
    Liu, L., Fishman, M. L., Hicks, K. B., and Kende, M. (2005) Biomaterials, 26, 5907–5916.PubMedCrossRefGoogle Scholar
  46. 46.
    Sriamornsak, P., Wattanakorn, N., and Takeuchi, H. (2010) Carbohydr. Pol., 79, 54–59.CrossRefGoogle Scholar
  47. 47.
    Gorshkova, T. A. (2007) Plant Cell Wall as Dynamic System [in Russian], Nauka, Moscow.Google Scholar
  48. 48.
    Yeoh, S., Shi, J., and Langrish, T. A. G. (2008) Desalination, 218, 229–237.CrossRefGoogle Scholar
  49. 49.
    Koubala, B. B., Kansci, G., Mbome, L. I., Crepeau, M. J., Thibault, J. F., and Ralet, M. C. (2008) Fd. Hydrocoll., 22, 1345–1351.CrossRefGoogle Scholar
  50. 50.
    Wai, W., Alkarkhi, A. F. M., and Easa, A. M. (2010) Fd. Bioprod. Proc., 88, 209–214.CrossRefGoogle Scholar
  51. 51.
    Round, A. N., Rigby, N. M., MacDougall, A. J., Ring, S. G., and Moriss, V. J. (2001) Carbohydr. Res., 331, 337–342.PubMedCrossRefGoogle Scholar
  52. 52.
    Michaleva, N. Ya., Borisenkov, M. F., Gunter, E. A., Popeyko, O. V., and Ovodov, Yu. S. (2010) Chem. Plant Raw Material, 3, 29–36.Google Scholar
  53. 53.
    Holloway, W. D., Tasman-Jones, C., and Maher, K. (1983) Am. J. Clin. Nutr., 37, 253–255.PubMedGoogle Scholar
  54. 54.
    Glinsky, V. V., and Raz, A. (2009) Carbohydr. Res., 344, 1788–1791.PubMedCrossRefGoogle Scholar
  55. 55.
    Sanders, L. M., Henderson, C. E., and Hong, M. Y. (2004) J. Nutr., 134, 3233–3238.PubMedGoogle Scholar
  56. 56.
    Vanamala, J., Glagolenko, A., Yang, P., Carroll, R. J., Murphy, M. E., Newman, R. A., Ford, J. R., Braby, L. A., Chapkin, R. S., Turner, N. D., and Lupton, J. R. (2008) Carcinogenesis, 29, 790–796.PubMedCrossRefGoogle Scholar
  57. 57.
    Umar, S., Morris, A. P., Kourouma, F., and Sellin, J. H. (2003) Cell Prolif., 36, 361–375.PubMedCrossRefGoogle Scholar
  58. 58.
    Rao, C. V., Chou, D., Simi, B., Ku, H., and Reddy, B. (1998) Carcinogenesis, 19, 1815–1819.PubMedCrossRefGoogle Scholar
  59. 59.
    Fluer, F. S., Kuznetzova, G. G., and Batisheva, S. Yu. (2006) Vopr. Pitaniya, 4, 46–49.Google Scholar
  60. 60.
    Ganan, M., Collins, M., Rastal, R., Hotchkiss, A. T., Chan, H. K., Carrascosa, A. V., and Martinez-Rodriguez, A. J. (2010) Int. J. Fd. Microbiol., 137, 181–185.CrossRefGoogle Scholar
  61. 61.
    Larsen, J. L. (1981) Nord. Vet. Med., 33, 218–223.PubMedGoogle Scholar
  62. 62.
    Olano-Martin, E., Williams, M. R., Gibson, G. R., and Rastall, R. A. (2003) FEMS Microbiol. Lett., 218, 101–105.PubMedCrossRefGoogle Scholar
  63. 63.
    Golovchenko, V. V., Khramova, D. S., Shashkov, A. S., Otgonbayar, D., Chimidsogzol, A., and Ovodov, Y. S. (2012) Carbohydr. Res., 356, 265–272.PubMedCrossRefGoogle Scholar
  64. 64.
    Zhao, Z., Li, J., Wu, X., Dai, H., Gao, X., Liu, M., and Tu, P. (2006) Fd. Res. Int., 39, 917–923.CrossRefGoogle Scholar
  65. 65.
    Wang, J. H., Luo, J. P., and Zha, X. Q. (2010) Carbohydr. Polym., 81, 1–7.CrossRefGoogle Scholar
  66. 66.
    Wang, X. S., Dong, Q., Zuo, J. P., and Fang, J. N. (2003) Carbohydr. Res., 338, 2393–2402.PubMedCrossRefGoogle Scholar
  67. 67.
    Matsumoto, N., Cyong, L. C., Kiyohara, H., Matsui, H., Abe, A., Hirano, M., Danbara, H., and Yamada, H. (1993) Int. J. Immunopharmacol., 15, 683–693.PubMedCrossRefGoogle Scholar
  68. 68.
    Sakurai, M. H., Matsumoto, T., Kiyohara, H., and Yamada, H. (1999) Immunology, 97, 540–547.PubMedCrossRefGoogle Scholar
  69. 69.
    Matsumoto, T., Moriya, M., Sakurai, M. H., Kiyohara, H., Tabuchi, Y., and Yamada, H. (2008) Int. Immunopharmacol., 8, 581–588.PubMedCrossRefGoogle Scholar
  70. 70.
    Kiyohara, H., Uchida, T., Takakiwa, M., Matsuzaki, T., Hada, N., Takeda, T., Shibata, T., and Yamada, H. (2010) Phytochemistry, 71, 280–293.PubMedCrossRefGoogle Scholar
  71. 71.
    Yu, K. W., Kiyohara, H., Matsumoto, T., Yang, H. C., and Yamada, H. (2001) Carbohydr. Polym., 46, 125–134.CrossRefGoogle Scholar
  72. 72.
    Samuelsen, A. B., Westereng, B., Yousif, O., Holtekjolen, A. K., Michaelsen, T. E., and Knutsen, S. H. (2007) Biomacromolecules, 8, 644–649.PubMedCrossRefGoogle Scholar
  73. 73.
    Ovodova, R. G., Golovchenko, V. V., Shashkov, A. S., Popov, S. V., and Ovodov, Yu. S. (2000) Russ. J. Bioorg. Chem., 26, 743–751.Google Scholar
  74. 74.
    Popov, S. V., Golovchenko, V. V., Ovodova, R. G., Smirnov, V. V., Popova, G. Yu., and Ovodov, Yu. S. (2006) Vaccine, 24, 5413–5419.PubMedCrossRefGoogle Scholar
  75. 75.
    Popov, S. V., Popova, G. Yu., Nikolaeva, S. Yu., Golovchenko, V. V., and Ovodova, R. G. (2005) Phytother. Res., 19, 1052–1056.PubMedCrossRefGoogle Scholar
  76. 76.
    Gloaguen, V., Brudieux, V., Closs, B., Barbat, A., Krausz, P., Sainte, Catherine, O., Kraemer, M., Maes, E., and Guerardel, Y. (2010) J. Nat. Prod., 73, 1087–1092.PubMedCrossRefGoogle Scholar
  77. 77.
    Popov, S. V., Ovodova, R. G., and Ovodov, Yu. S. (2006) Phytother. Res., 20, 403–407.PubMedCrossRefGoogle Scholar
  78. 78.
    Khramova, D. S., Popov, S. V., Golovchenko, V. V., Vityazev, F. V., Paderin, N. M., and Ovodov, Yu. S. (2009) Nutrition, 5, 226–232.CrossRefGoogle Scholar
  79. 79.
    Vazques-Torres, A., Jones-Carson, J., and Baumler, A. (1999) Nature, 401, 804–807.CrossRefGoogle Scholar
  80. 80.
    Soesatyo, M., Thepen, T., and Ghufron, M. (1993) in Dendritic Cells in Fundamental and Clinical Immunology (Kamperdijk, K., ed.) Plenum Press, N. Y., pp. 321–326.Google Scholar
  81. 81.
    Bloom, P. D., and Boedeker, E. C. (1996) Semin. Gastrointest. Dis., 7, 151–166.PubMedGoogle Scholar
  82. 82.
    Sharma, R., Van Damme, E. J. M., and Peumans, W. J. (1996) Histochem. Cell Biol., 105, 459–465.PubMedCrossRefGoogle Scholar
  83. 83.
    Eriksson, I., Andersson, R., and Aman, P. (1997) Carbohydr. Res., 301, 177–185.CrossRefGoogle Scholar
  84. 84.
    Ugolev, A. M. (1985) Evolution of the Digestion and Principles of Evolution of Functions: Elements of Modern Functionalism [in Russian], Nauka, Leningrad.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Institute of Physiology, Komi Science CenterUral Branch of the Russian Academy of SciencesSyktyvkarRussia

Personalised recommendations