Advertisement

Biochemistry (Moscow)

, Volume 78, Issue 7, pp 721–725 | Cite as

Animal models for lysosomal storage disorders

  • G. M. PastoresEmail author
  • P. A. Torres
  • B. -J. Zeng
Review

Abstract

The lysosomal storage disorders (LSD) represent a heterogeneous group of inherited diseases characterized by the accumulation of non-metabolized macromolecules (by-products of cellular turnover) in different tissues and organs. LSDs primarily develop as a consequence of a deficiency in a lysosomal hydrolase or its co-factor. The majority of these enzymes are glycosidases and sulfatases, which in normal conditions participate in degradation of glycoconjugates: glycoproteins, glycosaminoproteoglycans, and glycolipids. Significant insights have been gained from studies of animal models, both in understanding mechanisms of disease and in establishing proof of therapeutic concept. These studies have led to the introduction of therapy for certain LSD subtypes, primarily by enzyme replacement or substrate reduction therapy. Animal models have been useful in elucidating molecular changes, particularly prior to onset of symptoms. On the other hand, it should be noted certain animal (mouse) models may have the underlying biochemical defect, but not show the course of disease observed in human patients. There is interest in examining therapeutic options in the larger spontaneous animal models that may more closely mimic the brain size and pathology of humans. This review will highlight lessons learned from studies of animal models of disease, drawing primarily from publications in 2011–2012.

Key words

inherited diseases lysosomes lysosomal storage disorders (LSD) animal model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Filocamo, M., and Morrone, A. (2011) Hum. Genom., 5, 156–169.CrossRefGoogle Scholar
  2. 2.
    Walkley, S. U. (2009) J. Inherit. Metab. Dis., 32, 181–189.PubMedCrossRefGoogle Scholar
  3. 3.
    Suzuki, K., and Mansson, J. E. (1998) J. Inherit. Metab. Dis., 21, 540–547.PubMedCrossRefGoogle Scholar
  4. 4.
    Wakabayashi, K., Gustafson, A. M., Sidransky, E., and Goldin, E. (2011) Mol. Genet. Metab., 104, 206–213.PubMedCrossRefGoogle Scholar
  5. 5.
    Coutinho, M. F., Prata, M. J., and Alves, S. (2012) Mol. Genet. Metab., 107, 257–266.PubMedCrossRefGoogle Scholar
  6. 6.
    Kollmann, K., Damme, M., Markmann, S., Morelle, W., Schweizer, M., Hermans-Borgmeyer, I., Rochert, A. K., Pohl, S., Lubke, T., Michalski, J. C., Kakela, R., Walkley, S. U., and Braulke, T. (2012) Brain, 135(Pt. 9), 2661–2675.PubMedCrossRefGoogle Scholar
  7. 7.
    Walkley, S. U., Zervas, M., and Wiseman, S. (2000) Cereb. Cortex, 10, 1028–1037.PubMedCrossRefGoogle Scholar
  8. 8.
    Vitner, E. B., Platt, F. M., and Futerman, A. H. (2010) J. Biol. Chem., 285, 20423–20427.PubMedCrossRefGoogle Scholar
  9. 9.
    Yamanaka, S., Johnson, M. D., Grinberg, A., Westphal, H., Crawley, J. N., Taniike, M., Suzuki, K., and Proia, R. L. (1994) Proc. Natl. Acad. Sci. USA, 91, 9975–10010.PubMedCrossRefGoogle Scholar
  10. 10.
    Sango, K., Yamanaka, S., Hoffmann, A., Okuda, Y., Grinberg, A., Westphal, H., McDonald, M. P., Crawley, J. N., Sandhoff, K., Suzuki, K., and Proia, R. L. (1995) Nat. Genet., 11, 170–176.PubMedCrossRefGoogle Scholar
  11. 11.
    Elsea, S. H., and Lucas, R. E. (2002) ILAR J., 43, 66–79.PubMedCrossRefGoogle Scholar
  12. 12.
    Pastores, G. M. (2010) Lysosomal Storage Disorders: Principles and Practice, World Scientific Publishing Company, Singapore.Google Scholar
  13. 13.
    Lamb, C. A., Dooley, H. C., and Tooze, S. A. (2013) Bioessays, 35, 34–45.PubMedCrossRefGoogle Scholar
  14. 14.
    Elrick, M. J., and Lieberman, A. P. (2013) Autophagy, 9, 234–235.PubMedCrossRefGoogle Scholar
  15. 15.
    Di Malta, C., Fryer, J. D., Settembre, C., and Ballabio, A. (2012) Autophagy, 8, 1871–1872.PubMedCrossRefGoogle Scholar
  16. 16.
    Rosenbaum, A. I., and Maxfield, F. R. (2011) J. Neurochem., 116, 789–795.PubMedCrossRefGoogle Scholar
  17. 17.
    Elrick, M. J., Yu, T., Chung, C., and Lieberman, A. P. (2012) Hum. Mol. Genet., 21, 4876–4887.PubMedCrossRefGoogle Scholar
  18. 18.
    Appelqvist, H., Sandin, L., Bjornstrom, K., Saftig, P., Garner, B., Ollinger, K., and Kagedal, K. (2012) PLoS One, 7, e50262.PubMedCrossRefGoogle Scholar
  19. 19.
    Mattsson, N., Olsson, M., Gustavsson, M. K., Kosicek, M., Malnar, M., Mansson, J. E., Blomqvist, M., Gobom, J., Andreasson, U., Brinkmalm, G., Vite, C., Hecimovic, S., Hastings, C., Blennow, K., Zetterberg, H., and Portelius, E. (2012) Metab. Brain Dis., 27, 573–585.PubMedCrossRefGoogle Scholar
  20. 20.
    Raben, N., Wong, A., Ralston, E., and Myerowitz, R. (2012) Am. J. Med. Genet. C. Semin. Med. Genet., 1601, 13–21.Google Scholar
  21. 21.
    Wilkinson, F. L., Holley, R. J., Langford-Smith, K. J., Badrinath, S., Liao, A., Langford-Smith, A., Cooper, J. D., Jones, S. A., Wraith, J. E., Wynn, R. F., Merry, C. L., and Bigger, B. W. (2012) PLoS One, 7, e35787.PubMedCrossRefGoogle Scholar
  22. 22.
    Parente, M. K., Rozen, R., Cearley, C. N., and Wolfe, J. H. (2012) PLoS One, 7, e32419.PubMedCrossRefGoogle Scholar
  23. 23.
    Ioannou, Y. A., Zeidner, K. M., Gordon, R. E., and Desnick, R. J. (2001) Am. J. Hum. Genet., 68, 14–25.PubMedCrossRefGoogle Scholar
  24. 24.
    Pisani, A., Visciano, B., Roux, G. D., Sabbatini, M., Porto, C., Parenti, G., and Imbriaco, M. (2012) Mol. Genet. Metab., 107, 267–275.PubMedCrossRefGoogle Scholar
  25. 25.
    Weidemann, F., Linhart, A., Monserrat, L., and Strotmann, J. (2010) Int. J. Cardiol., 141, 3–10.PubMedCrossRefGoogle Scholar
  26. 26.
    Nguyen Dinh, Cat, A., Escoubet, B., Agrapart, V., Griol-Charhbili, V., Schoeb, T., Feng, W., Jaimes, E., Warnock, D. G., and Jaisser, F. (2012) PLoS One, 7, e33743.CrossRefGoogle Scholar
  27. 27.
    Maga, J. A., Zhou, J., Kambampati, R., Peng, S., Wang, X., Bohnsack, R. N., Thomm, A., Golata, S., Tom, P., Dahms, N. M., Byrne, B. J., and Lebowitz, J. H. (2013) J. Biol. Chem., 1428–1438.Google Scholar
  28. 28.
    Platt, F. M., Jeyakumar, M., Andersson, U., Heare, T., Dwek, R. A., and Butters, T. D. (2003) Philos. Trans. R. Soc. Lond. B. Biol. Sci., 358, 947–954.PubMedCrossRefGoogle Scholar
  29. 29.
    Haskins, M. (2009) ILAR J., 50, 112–121.PubMedCrossRefGoogle Scholar
  30. 30.
    Wolf, D. A., Hanson, L. R., Aronovich, E. L., Nan, Z., Low, W. C., Frey, W. H., 2nd, and McIvor, R. S. (2012) Mol. Genet. Metab., 106, 131–134.PubMedCrossRefGoogle Scholar
  31. 31.
    Hemsley, K. M., and Hopwood, J. J. (2011) J. Inherit. Metab. Dis., 34, 1003–1012.PubMedCrossRefGoogle Scholar
  32. 32.
    Vuillemenot, B. R., Katz, M. L., Coates, J. R., Kennedy, D., Tiger, P., Kanazono, S., Lobel, P., Sohar, I., Xu, S., Cahayag, R., Keve, S., Koren, E., Bunting, S., Tsuruda, L. S., and O’Neill, C. A. (2011) Mol. Genet. Metab., 104, 325–337.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Neurogenetics, Department of NeurologyNew York University School of MedicineNew YorkUSA

Personalised recommendations