Biochemistry (Moscow)

, Volume 78, Issue 4, pp 403–411 | Cite as

Study of structural dynamics of ligand-activated membrane receptors by means of principal component analysis

  • G. V. NovikovEmail author
  • V. S. Sivozhelezov
  • K. V. Shaitan


The structural dynamics of three different ligand-activated G-protein coupled receptors (GPCRs) and the photoreactive receptor rhodopsin from mammals were comparatively studied. As a result, diagrams demonstrating the main structural differences between the studied membrane receptors were obtained. These diagrams represent the projection of the crystal structures of rhodopsin photointermediates and ligand-activated receptors onto the plane defined by the principal components. Thus, we were able to associate the activation process of the receptors with large-scale movements of their individual transmembrane (TM) domains. In addition, the dynamics of extracellular loops of ligand-activated receptors responsible for recognition and initial binding of ligands was studied. Based on these results, two parameters of functionally significant structural dynamics of membrane receptors can be thoroughly analyzed simultaneously — movements of individual TM helices and of extracellular loops.

Key words

dynamics conformation membrane proteins X-ray crystallography principal component analysis structural bioinformatics 



β-1-adrenergic receptor


β-2-adrenergic receptor


G-protein coupled receptors


principal component analysis


the first principal component


Protein Data Bank


root-meansquare deviation

7TM receptors

seven transmembrane domain receptors


transmembrane domain


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bosier, B., and Hermans, E. (2007) Trends Pharmacol. Sci., 28, 438–446.PubMedCrossRefGoogle Scholar
  2. 2.
    Vassilatis, D. K., Hohmann, J. G., Zeng, H., Li, F., Ranchalis, J. E., Mortrud, M. T., Brown, A., Rodriguez, S. S., Weller, J. R., Wright, A. C., Bergmann, J. E., and Gaitanaris, G. A. (2003) Proc. Natl. Acad. Sci. USA, 100, 4903–4908.PubMedCrossRefGoogle Scholar
  3. 3.
    Zhang, R., and Xie, X. (2012) Acta Pharmacol. Sin., 33, 372–384.PubMedCrossRefGoogle Scholar
  4. 4.
    Congreve, M., and Marshall, F. (2010) Br. J. Pharmacol., 159, 986–996.PubMedCrossRefGoogle Scholar
  5. 5.
    Kenakin, T. (2011) J. Pharmacol. Exp. Ther., 336, 296–302.PubMedCrossRefGoogle Scholar
  6. 6.
    Kobilka, B. K., and Deupi, X. (2007) Trends Pharmacol. Sci., 28, 397–406.PubMedCrossRefGoogle Scholar
  7. 7.
    Deupi, X., and Standfuss, J. (2011) Curr. Opin. Struct. Biol., 21, 541–551.PubMedCrossRefGoogle Scholar
  8. 8.
    Okada, T., Ernst, O. P., Palczewski, K., and Hofmann, K. P. (2001) Trends Biochem. Sci., 26, 318–324.PubMedCrossRefGoogle Scholar
  9. 9.
    Zhou, X. E., Melcher, K., and Xu, H. E. (2012) Acta Pharmacol. Sin., 33, 291–299.PubMedCrossRefGoogle Scholar
  10. 10.
    Kim, T. Y., Schlieter, T., Haase, S., and Alexiev, U. (2012) Eur. J. Cell Biol., 91, 300–310.PubMedCrossRefGoogle Scholar
  11. 11.
    Peeters, M. C., van Westen, G. J., Li, Q., and Ap, I. J. (2011) Trends Pharmacol. Sci., 32, 35–42.PubMedCrossRefGoogle Scholar
  12. 12.
    Bokoch, M. P., Zou, Y., Rasmussen, S. G., Liu, C. W., Nygaard, R., Rosenbaum, D. M., Fung, J. J., Choi, H. J., Thian, F. S., Kobilka, T. S., Puglisi, J. D., Weis, W. I., Pardo, L., Prosser, R. S., Mueller, L., and Kobilka, B. K. (2010) Nature, 463, 108–112.PubMedCrossRefGoogle Scholar
  13. 13.
    Kenakin, T., and Miller, L. J. (2010) Pharmacol. Rev., 62, 265–304.PubMedCrossRefGoogle Scholar
  14. 14.
    Rajagopal, S., Rajagopal, K., and Lefkowitz, R. J. (2010) Nat. Rev. Drug. Discov., 9, 373–386.PubMedCrossRefGoogle Scholar
  15. 15.
    Hayward, S., Kitao, A., and Berendsen, H. J. C. (1998) Proteins: Structure, Function, and Bioinformatics, 27, 425–437.CrossRefGoogle Scholar
  16. 16.
    Warne, T., Serrano-Vega, M. J., Baker, J. G., Moukhametzianov, R., Edwards, P. C., Henderson, R., Leslie, A. G., Tate, C. G., and Schertler, G. F. (2008) Nature, 454, 486–491.PubMedCrossRefGoogle Scholar
  17. 17.
    Garcia, A. E. (1992) Phys. Rev. Lett., 68, 2696–2699.PubMedCrossRefGoogle Scholar
  18. 18.
    Konagurthu, A. S., Whisstock, J. C., Stuckey, P. J., and Lesk, A. M. (2006) Proteins, 64, 559–574.PubMedCrossRefGoogle Scholar
  19. 19.
    Ma, S., and Dai, Y. (2011) Brief Bioinform., 12, 714–722.PubMedCrossRefGoogle Scholar
  20. 20.
    Bakan, A., and Bahar, I. (2009) Proc. Natl. Acad. Sci. USA, 106, 14349–14354.PubMedCrossRefGoogle Scholar
  21. 21.
    Novikov, G. V., Sivozhelezov, S. S., Shebanova, A. S., and Shaitan, K. V. (2012) Biochemistry (Moscow), 77, 435–443.CrossRefGoogle Scholar
  22. 22.
    Bakan, A., Meireles, L. M., and Bahar, I. (2011) Bioinformatics, 27, 1575–1577.PubMedCrossRefGoogle Scholar
  23. 23.
    Kenakin, T. (2011) J. Pharmacol. Exp. Ther., 336, 296–302.PubMedCrossRefGoogle Scholar
  24. 24.
    Niesen, M. J., Bhattacharya, S., and Vaidehi, N. (2011) J. Am. Chem. Soc., 133, 13197–13204.PubMedCrossRefGoogle Scholar
  25. 25.
    Lebon, G., Warne, T., Edwards, P. C., Bennett, K., Langmead, C. J., Leslie, A. G., and Tate, C. G. (2011) Nature, 474, 521–525.PubMedCrossRefGoogle Scholar
  26. 26.
    Rosenbaum, D. M., Zhang, C., Lyons, J. A., Holl, R., Aragao, D., Arlow, D. H., Rasmussen, S. G., Choi, H. J., Devree, B. T., Sunahara, R. K., Chae, P. S., Gellman, S. H., Dror, R. O., Shaw, D. E., Weis, W. I., Caffrey, M., Gmeiner, P., and Kobilka, B. K. (2011) Nature, 469, 236–240.PubMedCrossRefGoogle Scholar
  27. 27.
    Rasmussen, S. G., DeVree, B. T., Zou, Y., Krus, A. C., Chung, K. Y., Kobilka, T. S., Thian, F. S., Chae, P. S., Pardon, E., Calinski, D., Mathiesen, J. M., Shah, S. T., Lyons, J. A., Caffrey, M., Gellman, S. H., Steyaert, J., Skiniotis, G., Weis, W. I., Sunahara, R. K., and Kobilka, B. K. (2011) Nature, 477, 549–555.PubMedCrossRefGoogle Scholar
  28. 28.
    Moukhametzianov, R., Warne, T., Edwards, P. C., Serrano-Vega, M. J., Leslie, A. G., Tate, C. G., and Schertler, G. F. (2011) Proc. Natl. Acad. Sci. USA, 108, 8228–8232.PubMedCrossRefGoogle Scholar
  29. 29.
    Milligan, G. (2003) Mol. Pharmacol., 64, 1271–1276.PubMedCrossRefGoogle Scholar
  30. 30.
    Salom, D., Lodowski, D. T., Stenkamp, R. E., Le Trong, I., Golczak, M., Jastrzebska, B., Harris, T., Ballesteros, J. A., and Palczewski, K. (2006) Proc. Natl. Acad. Sci. USA, 103, 16123–16128.PubMedCrossRefGoogle Scholar
  31. 31.
    Warne, T., Moukhametzianov, R., Baker, J. G., Nehme, R., Edwards, P. C., Leslie, A. G., Schertler, G. F., and Tate, C. G. (2011) Nature, 469, 241–244.PubMedCrossRefGoogle Scholar
  32. 32.
    Brunskole, I., Strasser, A., Seifert, R., and Buschauer, A. (2011) Naunyn Schmiedebergs Arch. Pharmacol., 384, 301–317.PubMedCrossRefGoogle Scholar
  33. 33.
    Vanni, S., Neri, M., Tavernelli, I., and Rothlisberger, U. (2009) Biochemistry, 48, 4789–4797.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • G. V. Novikov
    • 1
    Email author
  • V. S. Sivozhelezov
    • 1
  • K. V. Shaitan
    • 2
  1. 1.Institute of Cell BiophysicsRussian Academy of SciencesPushchino, Moscow RegionRussia
  2. 2.Faculty of BiologyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations