Biochemistry (Moscow)

, Volume 78, Issue 4, pp 385–394 | Cite as

Characterization of a cold-active lipase from Psychrobacter cryohalolentis K5T and its deletion mutants

  • K. A. Novototskaya-VlasovaEmail author
  • L. E. PetrovskayaEmail author
  • E. M. Rivkina
  • D. A. Dolgikh
  • M. P. Kirpichnikov


A gene coding for cold-active lipase from the psychrotrophic Gram-negative bacterium Psychrobacter cryohalolentis K5T isolated from a Siberian cryopeg has been cloned and expressed in Escherichia coli. The recombinant protein Lip1Pc with a 6× histidine tag at its C-terminus was purified by nickel affinity chromatography. With p-nitrophenyl dodecanoate (C12) as a substrate, the purified recombinant protein displayed maximum lipolytic activity at 25°C and pH 8.0. Increasing the temperature above 40°C and addition of various metal ions and organic solvents inhibited the enzymatic activity of Lip1Pc. Most nonionic detergents, such as Triton X-100 and Tween 20, slightly increased the lipase activity, while SDS completely inhibited it. To investigate the functional significance of the Lip1Pc N-terminal domain, we constructed five deletion mutants of this protein. The ND1 and ND2 mutants displayed specific activity reduced by 30–35%, while other truncated proteins were completely inactive. Both mutants demonstrated increased activity towards p-nitrophenyl decanoate (C10) and impaired utilization of C16 substrate. Although optimum reaction temperature of ND2 lowered to 20°C, it displayed enhanced stability by 44% after incubation at 40°C. The results prove that the N-terminal domain of Lip1Pc has a fundamental impact on the activity and stability of the protein.

Key words

cryopeg permafrost Psychrobacter cryohalolentis cold-active lipase thermostability deletion mutants 



3[(3-cholamidopropyl)dimethylam-monio]-propanesulfonic acid


ethylenediamine tetra-acetic acid


hormone sensitive lipase


isopropyl β-D-1-thiogalactopyranoside


phenylmethylsulfonyl fluoride




sodium dodecyl sulfate


splicing by overlapping extension PCR


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jaeger, K. E., Dijkstra, B. W., and Reetz, M. T. (1999) Ann. Rev. Microbiol., 53, 315–351.CrossRefGoogle Scholar
  2. 2.
    Reetz, M. T. (2002) Curr. Opin. Chem. Biol., 6, 145–150.PubMedCrossRefGoogle Scholar
  3. 3.
    Ollis, D. L., Cheah, E., Cygler, M., Dijkstra, B., Frolow, F., Franken, S. M., Harel, M., Remington, S. J., Silman, I., and Schrag, J. (1992) Protein Eng., 5, 197–211.PubMedCrossRefGoogle Scholar
  4. 4.
    Arpigny, J., and Jaeger, K. (1999) Biochem. J., 343, 177–183.PubMedCrossRefGoogle Scholar
  5. 5.
    Gerday, C., Aittaleb, M., Bentahir, M., Chessa, J. P., Claverie, P., Collins, T., D’Amico, S., Dumont, J., Garsoux, G., Georlette, D., Hoyoux, A., Lonhienne, T., Meuwis, M. A., and Feller, G. (2000) Trends Biotechnol., 18, 103–107.PubMedCrossRefGoogle Scholar
  6. 6.
    Joseph, B., Ramteke, P. W., and Thomas, G. (2008) Biotechnol. Adv., 26, 457–470.PubMedCrossRefGoogle Scholar
  7. 7.
    Zhang, A., Gao, R., Diao, N., Xie, G., Gao, G., and Cao, S. (2009) J. Mol. Catal. B: Enzymatic, 56, 78–84.CrossRefGoogle Scholar
  8. 8.
    Zhang, J., Lin, S., and Zeng, R. (2007) J. Microbiol. Biotechnol., 17, 604–610.PubMedGoogle Scholar
  9. 9.
    Chen, R., Guo, L., and Dang, H. (2011) World J. Microbiol. Biotechnol., 27, 431–441.CrossRefGoogle Scholar
  10. 10.
    Tolstikhin, N. I., and Tolstikhin, O. N. (1976) in Groundwater and Surface Water in the Permafrost Region, Chap. IX. General Permafrost Studies, Environment Canada, Inland Waters Directorate, Ottawa, Technical Bulletin No. 97, p. 25.Google Scholar
  11. 11.
    Gilichinsky, D., Rivkina, E., Bakermans, C., Shcherbakova, V., Petrovskaya, L., Ozerskaya, S., Ivanushkina, N., Kochkina, G., Laurinavichuis, K., and Pecheritsina, S. (2005) FEMS Microbiol. Ecol., 53, 117–128.PubMedCrossRefGoogle Scholar
  12. 12.
    Petrovskaya, L., Novototskaya-Vlasova, K., Spirina, E., Khokhlova, G., Rivkina, E., Dolgikh, D., and Kirpichnikov, M. (2012) DAN, 445, 102–105.Google Scholar
  13. 13.
    Bakermans, C., Ayala-del-Rio, H. L., Ponder, M. A., Vishnivetskaya, T., Gilichinsky, D., Thomashov, M. F., and Tiedje, J. M. (2006) Int. J. Syst. Evol. Microbiol., 56, 1285–1291.PubMedCrossRefGoogle Scholar
  14. 14.
    Novototskaya-Vlasova, K., Petrovskaya, L., Yakimov, S., and Gilichinsky, D. (2012) FEMS, 82, 367–375.CrossRefGoogle Scholar
  15. 15.
    Altschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990) J. Mol. Biol., 215, 403–410.PubMedGoogle Scholar
  16. 16.
    Sambrook, J., and Russell, D. W. (2001) Molecular Cloning: a Laboratory Manual, 3rd Edn., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, Vol. 1, p. 152.Google Scholar
  17. 17.
    Horton, R. M., Hunt, H. D., Ho, S. N., Pullen, J. K., and Pease, L. R. (1989) Gene, 77, 61–68.PubMedCrossRefGoogle Scholar
  18. 18.
    Kulakova, L., Galkin, A., Nakayama, T., Nishino, T., and Esaki, N. (2004) Biochim. Biophys. Acta, 1696, 59–65.PubMedCrossRefGoogle Scholar
  19. 19.
    Xuezheng, L., Shuoshuo, C., Guoying, X., Shuai, W., Ning, D., and Jihong, S. (2010) Polar Res., 29, 421–429.CrossRefGoogle Scholar
  20. 20.
    Parra, L., Reyes, F., Acevedo, J. P., Salazar, O., Andrews, B. A., and Asenjo, J. A. (2008) Enzyme Microb. Technol., 42, 371–377.CrossRefGoogle Scholar
  21. 21.
    Feller, G., Thiry, M., Arpigny, J. L., and Gerday, C. (1991) Gene, 102, 111–115.PubMedCrossRefGoogle Scholar
  22. 22.
    Mandrich, L., Pezzullo, M., Del Vecchio, P., Barone, G., Rossi, M., and Manco, G. (2004) J. Mol. Biol., 335, 357–369.PubMedCrossRefGoogle Scholar
  23. 23.
    Langin, D., Laurell, H., Holst, L. S., Belfrage, P., and Holm, C. (1993) Proc. Natl. Acad. Sci. USA, 90, 4897.PubMedCrossRefGoogle Scholar
  24. 24.
    Arpigny, J. L., Lamotte, J., and Gerday, C. (1997) J. Mol. Catal. B Enzym., 3, 29–35.CrossRefGoogle Scholar
  25. 25.
    De Santi, C., Tutino, M. L., Mandrich, L., Giuliani, M., Parrilli, E., Del Vecchio, P., and De Pascale, D. (2010) Biochimie, 92, 949–957.PubMedCrossRefGoogle Scholar
  26. 26.
    Nardini, M., and Dijkstra, B. W. (1999) Curr. Opin. Struct. Biol., 9, 732–737.PubMedCrossRefGoogle Scholar
  27. 27.
    Mandrich, L., Merone, L., Pezzullo, M., Cipolla, L., Nicotra, F., Rossi, M., and Manco, G. (2005) J. Mol. Biol., 345, 501–512.PubMedCrossRefGoogle Scholar
  28. 28.
    Shen, W. J., Sridhar, K., Bernlohr, D. A., and Kraemer, F. B. (1999) Proc. Natl. Acad. Sci. USA, 96, 5528.PubMedCrossRefGoogle Scholar
  29. 29.
    Feller, G., and Gerday, C. (1997) Cell. Mol. Life Sci., 53, 830–841.PubMedCrossRefGoogle Scholar
  30. 30.
    Gatti-Lafranconi, P., Caldarazzo, S. M., Villa, A., Alberghina, L., and Lotti, M. (2008) FEBS Lett., 582, 2313–2318.PubMedCrossRefGoogle Scholar
  31. 31.
    Wei, Y., Contreras, J. A., Sheffield, P., Osterlund, T., Derewenda, U., Kneusel, R. E., Matern, U., Holm, C., and Derewenda, Z. S. (1999) Nat. Struct. Biol., 6, 340–345.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • K. A. Novototskaya-Vlasova
    • 1
    Email author
  • L. E. Petrovskaya
    • 2
    Email author
  • E. M. Rivkina
    • 1
  • D. A. Dolgikh
    • 2
    • 3
  • M. P. Kirpichnikov
    • 2
    • 3
  1. 1.Institute of Physicochemical and Biological Problems in Soil ScienceRussian Academy of SciencesPushchino, Moscow RegionRussia
  2. 2.Shemyakin and Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia
  3. 3.Faculty of BiologyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations