Advertisement

Biochemistry (Moscow)

, Volume 78, Issue 4, pp 335–341 | Cite as

Bidirectional promoters in the transcription of mammalian genomes

  • A. S. Orekhova
  • P. M. RubtsovEmail author
Review

Abstract

In the genomes of humans and other mammals a large number of closely spaced pairs of genes that are transcribed in opposite directions were revealed. Their transcription is directed by so-called bidirectional promoters. This review is devoted to the characteristics of bidirectional promoters and features of their structure. The composition of “core” promoter elements in conventional unidirectional and bidirectional promoters is compared. Data on binding sites of transcription factors that are primarily specific for bidirectional promoters are discussed. The examples of promoters that share protein-coding genes transcribed by RNA polymerase II and the non-coding RNA genes transcribed by RNA polymerase III are described. Data obtained from global transcriptome analysis about the existence of short noncoding antisense RNA associated with the promoters in the context of the hypothesis of bidirectional transcription initiation as an inherent property of eukaryotic promoters are discussed.

Key words

genome structure bidirectional promoters divergent transcription transcriptome promoter core-elements transcription initiation CpG islands transcription factors short noncoding RNAs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Adachi, N., and Lieber, M. R. (2002) Cell, 109, 807–809.PubMedCrossRefGoogle Scholar
  2. 2.
    Trinklein, N. D., Aldred, S. H., Hartman, S. J., Schroeder, D. I., Otillar, R. P., and Myers, R. M. (2004) Genome Res., 14, 62–66.PubMedCrossRefGoogle Scholar
  3. 3.
    Collins, P. J., Kobayashi, Y., Nguyen, L., Trinklein, N. D., and Myers, R. M. (2007) PLoS Genet., 3, e208.PubMedCrossRefGoogle Scholar
  4. 4.
    Koyanagi, K. O., Hagiwara, M., Itoh, T., Gojobori, T., and Imanishi, T. (2005) Gene, 353, 169–176.PubMedCrossRefGoogle Scholar
  5. 5.
    Franck, E., Hulsen, T., Huynen, M. A., De Jong, W. W., Lubsen, N. H., and Madsen, O. (2008) Mol. Biol. Evol., 25, 1909–1921.PubMedCrossRefGoogle Scholar
  6. 6.
    Yang, M. Q., and Elnitski, L. L. (2007) Lect. Notes Comput. Sci., 4463, 361–371.CrossRefGoogle Scholar
  7. 7.
    Yang, M. Q., and Elnitski, L. L. (2008) BMC Genom., 9 (Suppl. 1), S2.CrossRefGoogle Scholar
  8. 8.
    Piontkivska, H., Yang, M. Q., Larkin, D. M., Lewin, H. A., Reecy, J., and Elnitski, L. (2009) BMC Genom., 10, 189.CrossRefGoogle Scholar
  9. 9.
    Engstrom, P. G., Suzuki, H., Ninomiya, N., Akalin, A., Sessa, L., Lavorgna, G., Brozzi, A., Lizi, L., Tan, S. L., Yang, L., Kunarso, G., Ng, E. L., Batalov, S., Wahlestedt, C., Kai, C., Kawai, J., Carninci, P., Hayashizaki, Y., Wells, C., Bajic, V. B., Orlando, V., Reid, J. F., Lenhard, B., and Lipovich, L. (2006) PLoS Genet., 2, e47.PubMedCrossRefGoogle Scholar
  10. 10.
    Yang, M. Q., and Elnitski, L. L. (2008) BMC Genom., 9(Suppl. 2), S3.Google Scholar
  11. 11.
    Smale, S. T., and Kadonaga, J. T. (2003) Annu. Rev. Biochem., 72, 449–479.PubMedCrossRefGoogle Scholar
  12. 12.
    Kutach, A. K., and Kadonaga, J. T. (2000) Mol. Cell. Biol., 20, 4754–4764.PubMedCrossRefGoogle Scholar
  13. 13.
    Lagrange, T., Kapanidis, A. N., Tang, H., Reinberg, D., and Ebright, R. H. (1998) Genes Dev., 12, 34–44.PubMedCrossRefGoogle Scholar
  14. 14.
    Yang, C., Bolotin, E., Jiang, T., Sladek, F. M., and Martinez, E. (2007) Gene, 389, 52–65.PubMedCrossRefGoogle Scholar
  15. 15.
    Javahery, R., Khachi, A., Lo, K., Zenzie-Gregory, B., and Smale, S. T. (1994) Mol. Cell. Biol., 14, 116–127.PubMedGoogle Scholar
  16. 16.
    Lin, J. M., Collins, P. J., Trinklein, N. D., Fu, Y., Xi, H., Myers, R. M., and Weng, Z. (2007) Genome Res., 17, 818–827.PubMedCrossRefGoogle Scholar
  17. 17.
    Bird, A. P. (1986) Nature, 321, 209–213.PubMedCrossRefGoogle Scholar
  18. 18.
    Gardiner-Garden, M., and Frommer, M. (1987) J. Mol. Biol., 196, 261–282.PubMedCrossRefGoogle Scholar
  19. 19.
    Antequera, F. (2003) Cell. Mol. Life Sci., 60, 1647–1658.PubMedCrossRefGoogle Scholar
  20. 20.
    Shu, J., Jelinek, J., Chang, H., Shen, L., Qin, T., Chung, W., Oki, Y., and Issa, J. P. (2006) Cancer Res., 66, 5077–5084.PubMedCrossRefGoogle Scholar
  21. 21.
    Zanotto, E., Shah, Z. H., and Jacobs, H. T. (2007) Nucleic Acids Res., 35, 664–677.PubMedCrossRefGoogle Scholar
  22. 22.
    Zanotto, E., Lehtonen, V., and Jacobs, H. T. (2008) Biochim. Biophys. Acta, 1783, 2352–2362.PubMedCrossRefGoogle Scholar
  23. 23.
    Hakkinen, A., Healy, S., Jacobs, H. T., and Ribeiro, A. S. (2011) J. Theor. Biol., 281, 74–83.PubMedCrossRefGoogle Scholar
  24. 24.
    Anno, Y.-N., Myslinski, E., Ngondo-Mbongo, R. P., Krol, A., Poch, O., Lecompte, O., and Carbon, P. (2011) Nucleic Acids Res., 39, 3116–3127.PubMedCrossRefGoogle Scholar
  25. 25.
    Schuster, C., Myslinski, E., Krol, A., and Carbon, P. (1995) EMBO J., 14, 3777–3787.PubMedGoogle Scholar
  26. 26.
    Schaub, M., Myslinski, E., Schuster, C., Krol, A., and Carbon, P. (1997) EMBO J., 16, 173–181.PubMedCrossRefGoogle Scholar
  27. 27.
    Myslinski, E., Krol, A., and Carbon, P. (1998) J. Biol. Chem., 273, 21998–22006.PubMedCrossRefGoogle Scholar
  28. 28.
    Schaub, M., Krol, A., and Carbon, P. (1999) J. Biol. Chem., 274, 24241–24249.PubMedCrossRefGoogle Scholar
  29. 29.
    Myslinski, E., Gerard, M. A., Krol, A., and Carbon, P. (2006) J. Biol. Chem., 281, 39953–39962.PubMedCrossRefGoogle Scholar
  30. 30.
    Ame, J.-C., Schreiber, V., Fraulob, V., Dolle, P., de Murcia, G., and Niedergang, C. P. (2001) J. Biol. Chem., 276, 11092–11099.PubMedCrossRefGoogle Scholar
  31. 31.
    Hung, C. F., Cheng, T. L., Wu, R. H., Teng, C. F., and Chang, W. T. (2006) Biochem. Biophys. Res. Commun., 339, 1035–1042.PubMedCrossRefGoogle Scholar
  32. 32.
    Orekhova, A. S., Sverdlova, P. S., Spirin, P. V., Leonova, O. G., Popenko, V. I., Prasolov, V. S., and Rubtsov, P. M. (2011) Mol. Biol. (Moscow), 45, 486–495.CrossRefGoogle Scholar
  33. 33.
    The ENCODE Project Consortium (2007) Nature, 447, 799–816.CrossRefGoogle Scholar
  34. 34.
    Jacquier, A. (2009) Nat. Rev. Genet., 10, 833–844.PubMedCrossRefGoogle Scholar
  35. 35.
    Carninci, P. (2010) DNA Res., 17, 51–59.PubMedCrossRefGoogle Scholar
  36. 36.
    Wei, W., Pelechano, V., Jarvelin, A. I., and Steinmetz, L. M. (2011) Tends Genet., 27, 267–276.CrossRefGoogle Scholar
  37. 37.
    Seila, A. C., Calabrese, J. M., Levine, S. S., Yeo, G. W., Rahl, P. B., Flynn, R. A., Young, R. A., and Sharp, P. A. (2008) Science, 322, 1849–1851.PubMedCrossRefGoogle Scholar
  38. 38.
    Seila, A. C., Core, L. J., Lis, J. T., and Sharp, P. A. (2009) Cell. Cycle, 8, 2557–2564.PubMedCrossRefGoogle Scholar
  39. 39.
    Kapranov, P., Cheng, J., Dike, S., Nix, D. A., Duttagupta, R., Willingham, A. T., Stadler, P. F., Hertel, J., Hackermuller, J., Hofacker, I. L., Bell, I., Cheung, E., Drenkow, J., Dumais, E., Patel, S., Helt, G., Ganesh, M., Ghosh, S., Piccolboni, A., Sementchenko, V., Tammana, H., and Gingeras, T. R. (2007) Science, 316, 1484–1488.PubMedCrossRefGoogle Scholar
  40. 40.
    Fejes-Toth, K., Sotirova, V., Sachidanandam, R., Assaf, G., Hannon, G. J., Kapranov, P., Foissac, S., Willingham, A. T., Duttagupta, R., Dumais, E., and Gingeras, T. R. (2009) Nature, 457, 1028–1032.CrossRefGoogle Scholar
  41. 41.
    Core, L. J., Waterfall, J. J., and Lis, J. T. (2008) Science, 322, 1845–1848.PubMedCrossRefGoogle Scholar
  42. 42.
    Taft, R. J., Glazov, E. A., Cloonan, N., Simons, C., Stephen, S., Faulkner, G. J., Lassmann, T., Forrest, A. R., Grimmond, S. M., Schroder, K., Irvine, K., Arakawa, T., Nakamura, M., Kubosaki, A., Hayashida, K., Kawazu, C., Murata, M., Nishiyori, H., Fukuda, S., Kawai, J., Daub, C. O., Hume, D. A., Suzuki, H., Orlando, V., Carninci, P., Hayashizaki, Y., and Mattick, J. S. (2009) Nat. Genet., 41, 572–578.PubMedCrossRefGoogle Scholar
  43. 43.
    Preker, P., Nielsen, J., Kammler, S., Lykke-Andersen, S., Christensen, M. S., Mapendano, C. K., Schierup, M. H., and Jensen, T. H. (2008) Science, 322, 1851–1854.PubMedCrossRefGoogle Scholar
  44. 44.
    Preker, P., Nielsen, J., Schierup, M. H., and Jensen, T. H. (2009) Cell. Cycle, 8, 1106–1107.PubMedCrossRefGoogle Scholar
  45. 45.
    Preker, P., Almvig, K., Christensen, M. S., Valen, E., Mapendano, C. K., Sandelin, A., and Jensen, T. H. (2011) Nucleic Acids Res., 39, 7179–7193.PubMedCrossRefGoogle Scholar
  46. 46.
    The ENCODE Project Consortium (2012) Nature, 489, 57–74.CrossRefGoogle Scholar
  47. 47.
    Sanyal, A., Lajoie, B. R., Jain, G., and Dekker, J. (2012) Nature, 489, 109–113.PubMedCrossRefGoogle Scholar
  48. 48.
    Yip, K. I., Cheng, C., Bhardwaj, N., Brown, J. B., Leng, J., Kundaje, A., Rozowsky, J., Birney, E., Bickel, P., Snyder, M., and Gerstein, M. (2012) Genome Biol., 13,R48, 1–22.Google Scholar
  49. 49.
    Tan-Wong, S. M., Zaugg, J. B., Camblong, J., Xu, Z., Zhang, D. W., Mischo, H. E., Ansari, A. Z., Luscombe, N. M., Steinmetz, L. M., and Proudfoot, N. J. (2012) Science, 338, 671–675.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations