Biochemistry (Moscow)

, Volume 78, Issue 3, pp 301–308

Interaction of N-acylated and N-alkylated chitosans included in liposomes with lipopolysaccharide of gram-negative bacteria

  • G. A. Naberezhnykh
  • V. I. Gorbach
  • G. N. Likhatskaya
  • S. Yu. Bratskaya
  • T. F. Solov’eva


The interactions of lipopolysaccharide (LPS) with the polycation chitosan and its derivatives — high molecular weight chitosans (300 kDa) with different degree of N-alkylation, its quaternized derivatives, N-monoacylated low molecular weight chitosans (5.5 kDa) — entrapped in anionic liposomes were studied. It was found that the addition of chitosans changes the surface potential and size of negatively charged liposomes, the magnitudes of which depend on the chitosan concentration. Acylated low molecular weight chitosan interacts with liposomes most effectively. The binding of alkylated high molecular weight chitosan with liposomes increases with the degree of its alkylation. The analysis of interaction of LPS with chitoliposomes has shown that LPS-binding activity decreased in the following order: liposomes coated with a hydrophobic chitosan derivatives > coated with chitosan > free liposomes. Liposomes with N-acylated low molecular weight chitosan bind LPS more effectively than liposomes coated with N-alkylated high molecular weight chitosans. The increase in positive charge on the molecules of N-alkylated high molecular weight chitosans at the cost of quaternization does not lead to useful increase in efficiency of binding chitosan with LPS. It was found that increase in LPS concentration leads to a change in surface ζ-potential of liposomes, an increase in average hydrodynamic diameter, and polydispersity of liposomes coated with N-acylated low molecular weight chitosan. The affinity of the interaction of LPS with a liposomal form of N-acylated chitosan increases in comparison with free liposomes. Computer simulation showed that the modification of the lipid bilayer of liposomes with N-acylated low molecular weight chitosan increases the binding of lipopolysaccharide without an O-specific polysaccharide with liposomes due to the formation of additional hydrogen and ionic bonds between the molecules of chitosan and LPS.

Key words

lipopolysaccharide chitosan liposomes binding computer modeling 



biotin-labeled lipopolysaccharide


critical concentration of micelle formation


high molecular weight chitosan


low molecular weight chitosan


alkylated high molecular weight chitosan


acylated low molecular weight chitosan


fluorescein isothiocyanate


fluorescein-labeled lipopolysaccharide




lipopolysaccharide without an O-specific polysaccharide


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Brandenburg, K., and Wiese, A. (2004) Curr. Top. Med. Chem., 4, 1127–1146.PubMedCrossRefGoogle Scholar
  2. 2.
    David, S. A. (2001) J. Molec. Recog., 14, 370–387.CrossRefGoogle Scholar
  3. 3.
    Andra, J., Gutsmann, Th., Garidel, P., and Brandenburg, K. (2006) J. Endotoxin Res., 12, 261–277.PubMedGoogle Scholar
  4. 4.
    Davidova, V. N., Naberezhnykh, G. A., Yermak, I. M., Gorbach, V. I., and Solov’eva, T. F. (2006) Biochemistry (Moscow), 71, 332–339.CrossRefGoogle Scholar
  5. 5.
    Yermak, I. M., Davidova, V. N., Gorbach, V. I., Luk’yanov, P. A., Solov’eva, T. F., Ulmer, A. J., Buwitt-Beckmann, U., Rietschel, E. T., and Ovodov, Yu. S. (2006) Biochimie, 88, 23–30.PubMedCrossRefGoogle Scholar
  6. 6.
    Naberezhnykh, G. A., Gorbach, V. I., Likhatskaya, G. N., Davidova, V. N., and Solov’eva, T. F. (2008) Biochemistry (Moscow), 73, 432–441.CrossRefGoogle Scholar
  7. 7.
    Dijkstra, J., Mellors, J. W., and Ryan, J. L. (1989) Infect. Immun., 57, 3357–3363.PubMedGoogle Scholar
  8. 8.
    Naberezhnykh, G. A., Gorbach, V. I., Bratskaya, S. Yu., and Solov’eva, T. F. (2011) Chem. Nat. Comp., 46, 852–856.CrossRefGoogle Scholar
  9. 9.
    Yalpani, M., and Hall, L. D. (1984) Macromolecules, 17, 272–281.CrossRefGoogle Scholar
  10. 10.
    Snyman, D., Hamman, J. H., Kotze, J. S., Rollings, J. E., and Kotze, A. F. (2002) Carbohydr. Polym., 50, 145–150.CrossRefGoogle Scholar
  11. 11.
    Sajomsan, W., Ruktanonchai, U. R., Gonil, P., and Nuchuchua, O. (2009) Carbohydr. Polym., 78, 945–952.CrossRefGoogle Scholar
  12. 12.
    Qaqish, R. B., and Amiji, M. M. (1999) Carbohydr. Polym., 38, 99–107.CrossRefGoogle Scholar
  13. 13.
    Thongborisute, J., Takeuchi, H., Yamamoto, H., and Kawashima, Y. (2006) Pharmazie, 61, 106–111.PubMedGoogle Scholar
  14. 14.
    Laye, C. D., McClements, J., and Weiss, J. (2008) J. Food Sci., 73, 7–15.CrossRefGoogle Scholar
  15. 15.
    Ferguson, A. D., Hofmann, E., Coulton, J. W., Diederichs, K., and Welte, W. (1998) Science, 282, 2215–2220.PubMedCrossRefGoogle Scholar
  16. 16.
    Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., and Bourne, P. E. (2000) Nucleic Acids Res., 28, 235–242.PubMedCrossRefGoogle Scholar
  17. 17.
    Wennberg, C. L., Spoel, D., and Hub, J. S. (2012) J. Am. Chem. Soc., 134, 5351–5361.PubMedCrossRefGoogle Scholar
  18. 18.
    Jiang, G.-B., Quan, D., Liao, K., and Wang, H. C. (2006) Carbohydr. Polym., 66, 514–520.CrossRefGoogle Scholar
  19. 19.
    Philippova, O. E., Volkov, E. V., Sitnikova, N. L., Khokhlov, A. R., Desbrieres, R., and Rinaudo, M. (2001) Biomacromolecules, 2, 483–490.PubMedCrossRefGoogle Scholar
  20. 20.
    Ortona, O., Derrico, G., Mangiapia, G., and Ciccarelli, D. (2008) Carbohydr. Polym., 74, 16–22.CrossRefGoogle Scholar
  21. 21.
    Martins, O., Cardoso, M. B., Pohlmann, A. R., and Silveira, N. P. (2006) J. Nanosci. Nanotech., 6, 2425–2431.CrossRefGoogle Scholar
  22. 22.
    Henriksen, I., Smistad, F., and Karlsen, J. (1994) Int. J. Pharm., 101, 227–236.CrossRefGoogle Scholar
  23. 23.
    Davydova, V. N., Bratskaya, S. Yu., Gorbach, V. I., Solov’eva, T. F., Kaca, W., and Yermak, I. M. (2008) Biophys. Chem., 136, 1–6.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • G. A. Naberezhnykh
    • 1
  • V. I. Gorbach
    • 1
  • G. N. Likhatskaya
    • 1
  • S. Yu. Bratskaya
    • 2
  • T. F. Solov’eva
    • 1
  1. 1.G. B. Elyakov Pacific Institute of Bioorganic ChemistryFar East Branch of the Russian Academy of SciencesVladivostokRussia
  2. 2.Institute of ChemistryFar East Branch of the Russian Academy of SciencesVladivostokRussia

Personalised recommendations