Biochemistry (Moscow)

, Volume 78, Issue 2, pp 176–184 | Cite as

Influence of chromatin structure, antibiotics, and endogenous histone methylation on phosphorylation of histones H1 and H3 in the presence of protein kinase A in rat liver nuclei in vitro

  • A. N. PrusovEmail author
  • T. A. Smirnova
  • G. Ya. Kolomijtseva


In vitro phosphorylation of histones H1 and H3 by cAMP-dependent protein kinase A and endogenous phosphokinases in the presence of [γ-32P]ATP was studied in isolated rat liver nuclei with different variants of chromatin structural organization: condensed (diameter of fibrils 100–200 nm; N-1) and partly decondensed (diameter of fibrils ∼30 nm; N-2). In the N-1 state histone, H1 is phosphorylated approximately twice as much than histone H3. Upon the decondensation of the chromatin in the N-2 state, 1.5-fold decrease of total phosphorylation of H1 is observed, while that of H3 does not change, although the endogenous phosphorylation of both histones is reduced by half. Changes in histone phosphorylation in the presence of low or high concentrations of distamycin and chromomycin differ for H1 and H3 in N-1 and N-2. It was found that distamycin (DM) stimulates the phosphorylation of tightly bound H1 fraction, which is not extractable by polyglutamic acid (PG), especially in N-1. Chromomycin (CM) increases the phosphorylation of both histones in PG extracts and in the nuclear pellets, particularly in N-2. At the same time, in N-1 one can detect phosphorylation of a tightly bound fraction of histones H1 whose N-termini are located on AT-rich sites that become inaccessible for protein kinase in the process of chromatin decondensation in N-2. At the same time, in N-2 the accessibility for protein kinase A of tightly bound H1 fractions, whose N-termini are located on GC-rich sites, increases dramatically. High concentrations of both CM and DM in N-1 and N-2 stimulated phosphorylation of the non-extractable by PG fraction of H1 whose N-termini are located on sites where AT ≈ GC. CM at high concentration stimulated 4–7 times the phosphorylation of a small fraction of H3, which is extracted by PG from both types of nuclei. We detected an effect of endogenous methylation of histones H1 and H3 in the nuclei on their subsequent phosphorylation depending on the chromatin structure, histone-chromatin binding strength, and concentration of DM.

Key words

nuclei chromatin histones H1 and H3 methylation phosphorylation distamycin chromomycin polyglutamic acid cAMP-dependent protein kinase A 







nuclei in buffer with 5 mM magnesium


nuclei in buffer with 1 mM magnesium


polyglutamic acid


protein kinase A




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Van Holde, K. (1988) Chromatin, Springer-Verlag, Berlin.Google Scholar
  2. 2.
    Kiryanov, G. I., Manamshjan, T. A., Polyakov, V. Yu., Fais, D., and Chentsov, Yu. S. (1976) FEBS Lett., 67, 323–327.PubMedCrossRefGoogle Scholar
  3. 3.
    Finch, J. T., and Klug, A. (1976) Proc. Natl. Acad. Sci. USA, 73, 1897–1901.PubMedCrossRefGoogle Scholar
  4. 4.
    Polyakov, V. Yu., Zatsepina, O. V., Kireev, I. I., Prusov, A. N., Fais, D., Sheval, E. V., Koblyakova, Yu. V., Golyshev, S. A., and Chentsov, Yu. S. (2006) Biochemistry (Moscow), 71, 1–9.CrossRefGoogle Scholar
  5. 5.
    Grigoryev, S. A., and Woodcock, C. L. (2012) Exp. Cell Res., 318, 1448–1455.PubMedCrossRefGoogle Scholar
  6. 6.
    Strahl, B., and Allis, C. D. (2000) Nature, 403, 41–45.PubMedCrossRefGoogle Scholar
  7. 7.
    Goldberg, A. D., Allis, C. D., and Bernstein, E. (2007) Cell, 128, 635–638.PubMedCrossRefGoogle Scholar
  8. 8.
    Prigent, C., and Dimitrov, S. (2003) J. Cell Sci., 116, 3677–3685.PubMedCrossRefGoogle Scholar
  9. 9.
    Malumbres, M. (2011) Physiol. Rev., 91, 973–1007.PubMedCrossRefGoogle Scholar
  10. 10.
    Taylor, S. S. (1982) J. Biol. Chem., 257, 6056–6063.PubMedGoogle Scholar
  11. 11.
    Paulson, J. R., and Taylor, S. S. (1982) J. Biol. Chem., 257, 6064–6072.PubMedGoogle Scholar
  12. 12.
    Zhang, Q., Carr, D. W., Lerea, K. M., Scott, J. D., and Newman, S. A. (1996) Dev. Biol., 176, 51–61.PubMedCrossRefGoogle Scholar
  13. 13.
    Sastri, M., Barraclough, D. M., Carmichael, P. T., and Taylor, S. S. (2005) Proc. Natl. Acad. Sci. USA, 102, 349–354.PubMedCrossRefGoogle Scholar
  14. 14.
    Mazen, A., Hacques, M.-F., and Marion, C. (1987) J. Mol. Biol., 194, 741–745.PubMedCrossRefGoogle Scholar
  15. 15.
    Kas, E., Poljak, L., Adachi, Y., and Laemmli, U. K. (1993) EMBO J., 12, 115–126.PubMedGoogle Scholar
  16. 16.
    Kolomijtseva, G. Ya., Prusov, A. N., Smirnova, T. A., and Vanyushin, B. F. (2010) Bioorg. Khim., 36, 672–680.Google Scholar
  17. 17.
    Prusov, A. N., Smirnova, T. A., Kurochkina, L. P., and Kolomijtseva, G. Ya. (2010) Biochemistry (Moscow), 75, 1331–1341.CrossRefGoogle Scholar
  18. 18.
    Prusov, A. N., and Zatsepina, O. V. (2002) Biochemistry (Moscow), 67, 423–431.CrossRefGoogle Scholar
  19. 19.
    Taylor, S. S., Lee, C. Y., Swain, L., and Stafford, P. H. (1976) Anal. Biochem., 76, 45–52.PubMedCrossRefGoogle Scholar
  20. 20.
    Laemmli, U. K. (1970) Nature, 227, 680–685.PubMedCrossRefGoogle Scholar
  21. 21.
    Gurley, L. R., D’Anna, J. A., Barham, S. S., Deaven, L. L., and Tobey, R. A. (1978) Eur. J. Biochem., 84, 1–15.PubMedCrossRefGoogle Scholar
  22. 22.
    Roque, A., Ponte, I., Arrondo, J. L., and Suau, P. (2008) Nucleic Acids Res., 36, 4719–4726.PubMedCrossRefGoogle Scholar
  23. 23.
    Wisniewski, J. R., Zougman, A., Kruger, S., and Mann, M. (2009) Mol. Cell Proteomics, 6, 72–87.Google Scholar
  24. 24.
    Hergeth, S. P., Dundr, M., Tropberger, P., Zee, B. M., Garcia, B. A., Daujat, S., and Schneider, R. (2011) J. Cell Sci., 124, 1623–1628.PubMedCrossRefGoogle Scholar
  25. 25.
    Paulson, J. R., and Taylor, S. S. (1982) J. Biol. Chem., 257, 6064–6072.PubMedGoogle Scholar
  26. 26.
    Harootunian, A. T., Adams, S. R., Wen, W., Meinkoth, J. L., Taylor, S. S., and Tsien, R. Y. (1993) Mol. Biol. Cell, 4, 993–1002.PubMedGoogle Scholar
  27. 27.
    Glotov, B. O., Itkes, A. V., Nikolaev, L. G., and Severin, E. S. (1978) FEBS Lett., 91, 149–152.PubMedCrossRefGoogle Scholar
  28. 28.
    Zheng, C., Lu, X., Hansen, J. C., and Hayes, J. J. (2005) J. Biol. Chem., 280, 33552–33557.PubMedCrossRefGoogle Scholar
  29. 29.
    Evdokimov, Yu. M., Salyanov, V. I., and Skuridin, S. G. (2007) Tekhnol. Zhivykh Sistem, 4, 3–30.Google Scholar
  30. 30.
    Cremer, T., Cremer, M., Dietzel, S., Muller, S., Solovei, I., and Fakan, S. (2006) Curr. Opin. Cell Biol., 18, 307–318.PubMedCrossRefGoogle Scholar
  31. 31.
    Sauve, D., Anderson, H. J., Ray, J. M., James, W. M., and Roberge, M. (1999) J. Cell Biol., 145, 225–235.PubMedCrossRefGoogle Scholar
  32. 32.
    Hendzel, M. J., Lever, M. A., Crawford, E., and Th’ng, J. P. (2004) J. Biol. Chem., 279, 20028–20034.PubMedCrossRefGoogle Scholar
  33. 33.
    Fischle, W., Wang, Y., and Allis, C. D. (2003) Curr. Opin. Cell Biol., 15, 172–183.PubMedCrossRefGoogle Scholar
  34. 34.
    Fischle, W., Wang, Y., and Allis, C. D. (2003) Nature, 425, 475–479.PubMedCrossRefGoogle Scholar
  35. 35.
    Cerutti, H., and Casas-Mollano, J. A. (2009) Epigenetics, 4, 71–75.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • A. N. Prusov
    • 1
    Email author
  • T. A. Smirnova
    • 1
    • 2
  • G. Ya. Kolomijtseva
    • 1
  1. 1.Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia
  2. 2.Institute of Agricultural BiotechnologyRussian Academy of Agricultural SciencesMoscowRussia

Personalised recommendations