Advertisement

Biochemistry (Moscow)

, Volume 78, Issue 2, pp 166–175 | Cite as

Interaction of short peptides with FITC-labeled wheat histones and their complexes with deoxyribooligonucleotides

  • L. I. Fedoreyeva
  • T. A. Smirnova
  • G. Ya. Kolomijtseva
  • V. Kh. Khavinson
  • B. F. VanyushinEmail author
Article

Abstract

Judging from fluorescence modulation (quenching), short peptides (Ala-Glu-Asp-Gly, Glu-Asp-Arg, Ala-Glu-Asp-Leu, Lys-Glu-Asp-Gly, Ala-Glu-Asp-Arg, and Lys-Glu-Asp-Trp) bind with FITC-labeled wheat histones H1, H2в, H3, and H4. This results from the interaction of the peptides with the N-terminal histone regions that contain respective and seemingly homologous peptide-binding motifs. Because homologous amino acid sequences in wheat core histones were not found, the peptides seem to bind with some core histone regions having specific conformational structure. Peptide binding with histones and histone-deoxyribooligonucleotide complexes depends on the nature of the histone and the primary structures of the peptides and oligonucleotides; thus, it is site specific. Histones H1 bind preferentially with single-stranded oligonucleotides by homologous sites in the C-terminal region of the protein. Unlike histone H1, the core histones bind pre-dominantly with double-stranded methylated oligonucleotides and methylated DNA. Stern-Volmer constants of interaction of histone H1 and core histones with double-stranded hemimethylated oligonucleotides are higher compared with that of binding with unmethylated ones. DNA or deoxyribooligonucleotides in a complex with histones can enhance or inhibit peptide binding. It is suggested that site-specific interactions of short biologically active peptides with histone tails can serve in chromatin as control epigenetic mechanisms of regulation of gene activity and cellular differentiation.

Key words

histones short peptides interaction binding histone-oligonucleotide-peptide complexes DNA methylation wheat plant epigenetics 

Abbreviations

FITC

fluorescein isothiocyanate

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Khavinson, V. Kh., and Malinin, V. V. (2005) Gerontological Aspects of Genome Peptide Regulation, Karger AG, Basel.Google Scholar
  2. 2.
    Fedoreyeva, L. I., Kireev, I. I., Khavinson, V. Kh., and Vanyushin, B. F. (2011) Biochemistry (Moscow), 76, 1210–1219.CrossRefGoogle Scholar
  3. 3.
    Khavinson, V. Kh., Fedoreyeva, L. I., and Vanyushin, B. F. (2011) Dokl. RAN, 437, 124–127.Google Scholar
  4. 4.
    Kirnos, M. D., Aleksandrushkina, N. I., Shorning, B. Yu., Kudryasova, I. B., and Vanyushin, B. F. (1999) Rus. J. Plant Physiol., 46, 48–57.Google Scholar
  5. 5.
    Smirnova, T. A., Prusov, A. N., Kolomijtseva, G. Ya., and Vanyushin, B. F. (2004) Biochemistry (Moscow), 69, 1128–1135.CrossRefGoogle Scholar
  6. 6.
    Fedoreyeva, L. I., Smirnova, T. A., Kolomijtseva, G. Ya., and Vanyushin, B. F. (2009) Biochemistry (Moscow), 74, 145–152.CrossRefGoogle Scholar
  7. 7.
    Schaffner, W., and Weissmann, C. (1973) Anal. Biochem., 56, 502–514.PubMedCrossRefGoogle Scholar
  8. 8.
    Castel, J., Pestana, A., Castro, R., and Marco, R. (1978) Analyt. Biochem., 90, 551–560.CrossRefGoogle Scholar
  9. 9.
    Hieb, A. R., D’Arcy, S., Kramer, M. A., White, A. E., and Luger, K. (2011) Nucleic Acids Res., 24, 1–15.Google Scholar
  10. 10.
    Lakowicz, J. R., and Weber, G. (1973) Biochemistry, 12, 4161–4170.PubMedCrossRefGoogle Scholar
  11. 11.
    Xie, M. X., Long, M., Liu, Y., Qin, C., and Wang, Y. (2006) Biochim. Biophys. Acta, 1760, 1184–1191.PubMedCrossRefGoogle Scholar
  12. 12.
    Matthew, G. M. (2009) Curr. Pharm. Des., 15, 3681–3696.CrossRefGoogle Scholar
  13. 13.
    Gantt, J. S., and Lenvik, T. R. (1991) Eur. J. Biochem., 202, 1029–1031.PubMedCrossRefGoogle Scholar
  14. 14.
    Ponte, I., Vila, R., and Suau, P. (2003) Mol. Biol. Evol., 20, 371–380.PubMedCrossRefGoogle Scholar
  15. 15.
    Zlatanova, J., Caiafa, P., and van Holde, K. (2000) FASEB J., 14, 1697–1704.PubMedCrossRefGoogle Scholar
  16. 16.
    Allan, J., Mitchell, T., Hasborne, N., Bohm, L., and Cran-Robinson, C. (1986) J. Mol. Biol., 187, 591–601.PubMedCrossRefGoogle Scholar
  17. 17.
    Zhiryakova, M. V., and Izumrudov, V. A. (2007) Vysokomol. Soed., 49, 2092–2106.Google Scholar
  18. 18.
    Dyachenko, O. V., Shevchyuk, T. V., and Buryanov, Ya. I. (2010) Mol. Biol. (Moscow), 44, 1–16.CrossRefGoogle Scholar
  19. 19.
    Khadake, J. R., and Rao, M. R. S. (1996) Biochemistry, 36, 1041–1051.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • L. I. Fedoreyeva
    • 1
    • 2
  • T. A. Smirnova
    • 1
    • 2
  • G. Ya. Kolomijtseva
    • 2
  • V. Kh. Khavinson
    • 3
  • B. F. Vanyushin
    • 1
    • 2
    Email author
  1. 1.All Russia Research Institute of Agricultural BiotechnologyRussian Academy of Agricultural SciencesMoscowRussia
  2. 2.Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia
  3. 3.St. Petersburg Institute of Bioregulation and GerontologyRussian Academy of Medical SciencesSt. PetersburgRussia

Personalised recommendations