Advertisement

Biochemistry (Moscow)

, Volume 78, Issue 1, pp 68–74 | Cite as

Mitochondria-addressed cations decelerate the leaf senescence and death in Arabidopsis thaliana and increase the vegetative period and improve crop structure of the wheat Triticum aestivum

  • E. V. Dzyubinskaya
  • I. F. Ionenko
  • D. B. Kiselevsky
  • V. D. SamuilovEmail author
  • F. D. Samuilov
Article

Abstract

Plastoquinone or its methylated form covalently bound to the membrane-penetrating decyltriphenylphosphonium cation (SkQ1 and SkQ3) retarded the senescence of Arabidopsis thaliana rosette leaves and their death. Dodecyltriphenylphosphonium (C12TPP+) had a similar effect. Much like SkQ1, C12TPP+ prevented production of reactive oxygen species (ROS) measured by the fluorescence of 2′,7′-dichlorofluorescein in mitochondria of the plant cells. SkQ1 augmented the length of the vegetation period and the common and productive tillering, improved the crop structure and the productivity of the wheat Triticum aestivum. These results indicate that the tested compounds act as antioxidants, that ROS participate in aging and death of A. thaliana leaves, and wheat tillering is increased and the crop structure is improved by SkQ1.

Key words

mitochondria-addressed compounds reactive oxygen species programmed cell death Arabidopsis thaliana veg-etation period crop structure Triticum aestivum 

Abbreviations

C12TPP+

dodecyltriphenylphosphonium

DCF

2′,7′-dichlorofluorescein

PCD

programmed cell death

ROS

reactive oxygen species

SkQ1

10-(6′-plastoquinonyl)decyltriphenylphosphonium

SkQ3

10-(6′-methylplastoquinonyl)decyltriphenylphosphonium

ΔΨ

transmembrane difference of electric potentials

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Skulachev, V. P. (2001) Exp. Gerontol., 36, 995–1024.PubMedCrossRefGoogle Scholar
  2. 2.
    Xu, Y., and Hanson, M. R. (2000) Plant Physiol., 122, 1323–1333.PubMedCrossRefGoogle Scholar
  3. 3.
    Ye, Z., Rodriguez, R., Tran, A., Hoang, H., de los Santos, D., Brown, S., and Vellanoweth, R. L. (2000) Plant Sci., 158, 115–127.PubMedCrossRefGoogle Scholar
  4. 4.
    Srivalli, S., and Khanna-Chopra, R. (2009) Plant Physiol. Biochem., 47, 663–670.PubMedCrossRefGoogle Scholar
  5. 5.
    Yoshida, S. (2003) Curr. Opin. Plant Biol., 6, 79–84.PubMedCrossRefGoogle Scholar
  6. 6.
    Lim, P. O., Kim, H. J., and Nam, H. G. (2007) Annu. Rev. Plant Biol., 58, 115–136.PubMedCrossRefGoogle Scholar
  7. 7.
    Buchanan-Wollaston, V. (1997) J. Exp. Bot., 48, 181–199.CrossRefGoogle Scholar
  8. 8.
    Lim, P. O., Woo, H. R., and Nam, H. G. (2003) Trends Plant Sci., 8, 272–278.PubMedCrossRefGoogle Scholar
  9. 9.
    Grbic, V., and Bleecker, A. B. (1995) Plant J., 8, 595–602.CrossRefGoogle Scholar
  10. 10.
    Lee, I. C., Hong, S. W., Whang, S. S., Lim, P. O., Nam, H. G., and Koo, J. C. (2011) Plant Cell Physiol., 52, 651–662.PubMedCrossRefGoogle Scholar
  11. 11.
    Zavaleta-Mancera, H. A., Lopez-Delgado, H., Loza-Tavera, H., Mora-Herrera, M., Trevilla-Garcia, C., Vargas-Suarez, M., and Ougham, H. (2007) J. Plant Physiol., 164, 1572–1582.PubMedCrossRefGoogle Scholar
  12. 12.
    Orendi, G., Zimmermann, P., Baar, C., and Zentgraf, U. (2001) Plant Sci., 161, 301–314.PubMedCrossRefGoogle Scholar
  13. 13.
    Srivalli, B., and Khanna-Chopra, R. (2004) Biochem. Biophys. Res. Commun., 325, 198–202.PubMedCrossRefGoogle Scholar
  14. 14.
    Hui, Z., Tian, F.-X., Wang, G.-K., Wang, G.-P., and Wang, W. (2012) Plant Cell Rep., Epub ahead of print, DOI: 10.1007/s00299-012-1226-z.Google Scholar
  15. 15.
    Jimenez, A., Hernandez, J. A., Pastori, G., del Rio, L. A., and Sevilla, F. (1998) Plant Physiol., 118, 1327–1335.PubMedCrossRefGoogle Scholar
  16. 16.
    Guo, F.-Q., and Crawford, N. M. (2005) Plant Cell, 17, 3436–3450.PubMedCrossRefGoogle Scholar
  17. 17.
    Bartoli, C. G., Gomez, F., Martinez, D. E., and Guiamet, J. J. (2004) J. Exp. Bot., 55, 1663–1669.PubMedCrossRefGoogle Scholar
  18. 18.
    Skulachev, V. P. (2007) Biochemistry (Moscow), 72, 1385–1396.CrossRefGoogle Scholar
  19. 19.
    Antonenko, Y. N., Avetisyan, A. V., Chernyak, B. V., Chertkov, V. A., Domnina, L. V., Ivanova, O. Yu., Izyumov, D. S., Khailova, L. S., Klishin, S. S., Korshunova, G. A., Lyamzaev, K. G., Muntyan, M. S., Nepryakhina, O. K., Pashkovskaya, A. A., Pletyushkina, O. Yu., Pustovidko, A. V., Roginsky, V. A., Rokitskaya, T. I., Ruuge, E. K., Saprunova, V. B., Severina, I. I., Simonyan, R. A., Skulachev, I. V., Skulachev, M. V., Sumbatyan, N. V., Sviryaeva, I. V., Tashlitsky, V. N., Vassiliev, J. M., Vyssokikh, M. Yu., Yaguzhinsky, L. S., Zamyatin, A. A., Jr., and Skulachev, V. P. (2008) Biochemistry (Moscow), 73, 1273–1287.CrossRefGoogle Scholar
  20. 20.
    Vasil’ev, L. A., Dzyubinskaya, E. V., Kiselevsky, D. B., Shestak, A. A., and Samuilov, V. D. (2011) Biochemistry (Moscow), 76, 1120–1130.CrossRefGoogle Scholar
  21. 21.
    Vasil’ev, L. A., Kiselevsky, D. B., Dzyubinskaya, E. V., Nesov, A. V., and Samuilov, V. D. (2012) Biochemistry (Moscow), 77, 354–361.CrossRefGoogle Scholar
  22. 22.
    Anisimov, V. N., Bakeeva, L. E., Egormin, P. A., Filenko, O. F., Isakova, E. F., Manskikh, V. N., Mikhelson, V. M., Panteleeva, A. A., Pasyukiva, E. G., Pilipenko, D. I., Piskunova, T. S., Popovich, I. G., Roshchina, N. V., Rybina, O. Yu., Saprunova, V. B., Samoylova, T. A., Semenchenko, A. V., Skulachev, M. V., Spivak, I. M., Tsybul’ko, E. A., Tyndyk, M. I., Vyssokikh, M. Yu., Yurova, M. N., Zabezhinsky, M. A., and Skulachev, V. P. (2008) Biochemistry (Moscow), 73, 1329–1342.CrossRefGoogle Scholar
  23. 23.
    LeBel, C. P., Ischiropoulos, H., and Bondy, S. C. (1992) Chem. Res. Toxicol., 5, 227–231.PubMedCrossRefGoogle Scholar
  24. 24.
    Vasil’ev, L. A., Dzyubinskaya E. V., Zinovkin, R. A., Kiselevsky, D. B., Lobysheva, N. V., and Samuilov, V. D. (2009) Biochemistry (Moscow), 74, 1035–1043.CrossRefGoogle Scholar
  25. 25.
    Hirsch, R. E., Lewis, B. D., Spalding, E. P., and Sussman, M. R. (1998) Science, 280, 918–921.PubMedCrossRefGoogle Scholar
  26. 26.
    Palmgren, M. G. (2001) Annu. Rev. Plant Physiol. Plant Mol. Biol., 52, 817–845.PubMedCrossRefGoogle Scholar
  27. 27.
    Severin, F. F., Severina, I. I., Antonenko, Yu. N., Rokitskaya, T. I., Cherepanov, D. A., Mokhova, E. N., Vyssokikh, M. Yu., Pustovidko, A. V., Markova, O. V., Yaguzhinsky, L. S., Korshunova, G. A., Sumbatyan, N. V., Skulachev, M. V., and Skulachev, V. P. (2010) Proc. Natl. Acad. Sci. USA, 107, 663–668.PubMedCrossRefGoogle Scholar
  28. 28.
    Skulachev, V. P. (1996) Quart. Rev. Biophys., 29, 169–202.CrossRefGoogle Scholar
  29. 29.
    Korshunov, S. S., Skulachev, V. P., and Starkov, A. A. (1997) FEBS Lett., 416, 15–18.PubMedCrossRefGoogle Scholar
  30. 30.
    Kumakov, V. A. (1980) Physiology of Spring Wheat [in Russian], Kolos, Moscow.Google Scholar
  31. 31.
    Young, T. E., and Gallie, D. R. (1999) Plant Mol. Biol., 39, 915–926.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • E. V. Dzyubinskaya
    • 1
  • I. F. Ionenko
    • 2
  • D. B. Kiselevsky
    • 1
  • V. D. Samuilov
    • 1
    Email author
  • F. D. Samuilov
    • 3
  1. 1.Faculty of BiologyLomonosov Moscow State UniversityMoscowRussia
  2. 2.Institute of Biochemistry and BiophysicsKazan Scientific Center of the Russian Academy of SciencesKazanRussia
  3. 3.Kazan State Agrarian UniversityKazanRussia

Personalised recommendations