Advertisement

Biochemistry (Moscow)

, Volume 78, Issue 1, pp 60–67 | Cite as

Charge separation in Rhodobacter sphaeroides mutant reaction centers with increased midpoint potential of the primary electron donor

  • A. Yu. KhmelnitskiyEmail author
  • R. A. Khatypov
  • A. M. Khristin
  • M. M. Leonova
  • L. G. Vasilieva
  • V. A. Shuvalov
Article

Abstract

Primary charge separation dynamics in four mutant reaction centers (RCs) of the purple bacterium Rhodobacter sphaeroides with increased midpoint potential of the primary electron donor P (M160LH, L131LH, M197FH, and M160LH + L131LH + M197FH) have been studied by femtosecond transient absorption spectroscopy at room temperature. The decay of the excited singlet state in the wild-type and mutant RCs is complex and has two main exponential components, which indicates heterogeneity of electron transfer rates or the presence of reverse electron transfer reactions. The radical anion band of monomeric bacteriochlorophyll BA at 1020 nm was first observed in transient absorbance difference spectra of single mutants. This band remains visible, although with somewhat reduced amplitude, even at delays up to tens of picoseconds when stimulated emission is absent and the reaction centers are in the P+H A state. The presence of this band in this time period indicates the existence of thermodynamic equilibrium between the P+B A HA and P+BAH A states. The data give grounds for assuming that the value of the energy difference between the states P*, P+B A HA, and P+BAH A at early times is of the same order of magnitude as the energy kT at room temperature. Besides, monomeric bacteriochlorophyll BA is found to be an immediate electron acceptor in the single mutant RCs, where electron transfer is hampered due to increased energy of the P+B A state with respect to P*.

Key words

photosynthesis charge separation reaction center femtosecond spectroscopy electron transfer 

Abbreviations

ΔA

absorption change (light-minus-dark)

BA and BB

monomeric BChl in A- and B-chain, respectively

BChl

bacteriochlorophyll

BPheo

bacteriopheophytin

HA and HB

BPheo in A- and B-chain, respectively

P

primary electron donor, BChl dimer

PA and PB

BChl molecules within P

QA and QB

primary and secondary quinone, respectively

Rba., Rhodobacter

RC, reaction center

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Wohri, A. B., Wahlgren, W. Y., Malmerberg, E., Johansson, L. C., Neutze, R., and Katona, G. (2009) Biochemistry, 48, 9831–9838.PubMedCrossRefGoogle Scholar
  2. 2.
    Stowell, M. H. B., McPhillips, T. M., Rees, D. C., Soltis, S. M., Abresch, E., and Feher, G. (1997) Science, 276, 812–816.PubMedCrossRefGoogle Scholar
  3. 3.
    Khatypov, R. A., Khmelnitskiy, A. Yu., Khristin, A. M., and Shuvalov, V. A. (2010) Doklady Biochem. Biophys., 430, 24–28.CrossRefGoogle Scholar
  4. 4.
    Khatypov, R. A., Khmelnitskiy, A. Yu., Khristin, A. M., Fufina, T. Yu., Vasilieva, L. G., and Shuvalov, V. A. (2012) Biochim. Biophys. Acta, 1817, 1392–1398.PubMedCrossRefGoogle Scholar
  5. 5.
    Shuvalov, V. A. (1990) Primary Conversion of Light Energy in Photosynthesis [in Russian], Nauka, Moscow.Google Scholar
  6. 6.
    Kirmaier, C., and Holten, D. (1993) in The Photosynthetic Reaction Center (Deisenhofer, J., and Norris, J., eds.) Academic Press, San Diego, pp. 49–70.Google Scholar
  7. 7.
    Woodbury, N. W., and Allen, J. P. (1995) in Anoxygenic Photosynthetic Bacteria (Blankenship, R. E., Madigan, M. T., and Bauer, C. E., eds.) Kluwer Academic Publishers, Dordrecht, pp. 527–557.Google Scholar
  8. 8.
    Shuvalov, V. A. (2000) Conversion of Light Energy in Primary Act of Charge Separation in Reaction Centers of Photosynthesis [in Russian], Nauka, Moscow.Google Scholar
  9. 9.
    Shuvalov, V. A., and Yakovlev, A. G. (2003) FEBS Lett., 540, 26–34.PubMedCrossRefGoogle Scholar
  10. 10.
    Deisenhofer, J., Epp, O., Miki, K., Huber, R., and Michel, H. (1984) J. Mol. Biol., 180, 385–398.PubMedCrossRefGoogle Scholar
  11. 11.
    Ermler, U., Fritzsch, G., Buchanan, S. K., and Michel, H. (1994) Structure, 2, 925–936.PubMedCrossRefGoogle Scholar
  12. 12.
    Hu, Y., and Mukamel, S. (1990) in Perspectives in Photosynthesis (Jortner, J., and Pullman, B., eds.) Kluwer Academic Publishers, Amsterdam, pp. 171–184.CrossRefGoogle Scholar
  13. 13.
    Holzapfel, W., Finkele, U., Kaiser, W., Oesterhelt, D., Scheer, H., Stilz, H. U., and Zinth, W. (1989) Chem. Phys. Lett., 160, 1–7.CrossRefGoogle Scholar
  14. 14.
    Arlt, T., Schmidt, S., Kaiser, W., Lauterwasser, C., Meyer, M., Scheer, H., and Zinth, W. (1993) Proc. Natl. Acad. Sci. USA, 90, 11757–11761.PubMedCrossRefGoogle Scholar
  15. 15.
    Kennis, J. T., Shkuropatov, A. Y., van Stokkum, I. H. M., Gast, P., Hoff, A. J., Shuvalov, V. A., and Aartsma, T. J. (1997) Biochemistry, 36, 16231–16238.PubMedCrossRefGoogle Scholar
  16. 16.
    Yakovlev, A. G., Shkuropatov, A. Y., and Shuvalov, V. A. (2000) FEBS Lett., 466, 209–212.PubMedCrossRefGoogle Scholar
  17. 17.
    Moser, C. C., Keske, J. M., Warncke, K., Farid, R. S., and Dutton, P. L. (1992) Nature, 355, 796–802.PubMedCrossRefGoogle Scholar
  18. 18.
    Williams, J. C., Alden, R. G., Murchison, H. A., Peloquin, J. M., Woodbury, N. W., and Allen, J. P. (1992) Biochemistry, 31, 11029–11037.PubMedCrossRefGoogle Scholar
  19. 19.
    Spiedel, D., Jones, M. R., and Robert, B. (2002) FEBS Lett., 527, 171–175.PubMedCrossRefGoogle Scholar
  20. 20.
    Allen, J. P., and Williams, J. C. (1995) J. Bioenerg. Biomembr., 27, 275–283.PubMedCrossRefGoogle Scholar
  21. 21.
    Jones, M. R., Visschers, R. W., van Grondelle, R., and Hunter, C. N. (1992) Biochemistry, 31, 4458–4465.PubMedCrossRefGoogle Scholar
  22. 22.
    Vasil’eva, L. G., Bolgarina, T. I., Khatypov, R. A., Shkuropatov, A. Ya., Miyake, J., and Shuvalov, V. A. (2001) Doklady Biochem. Biophys., 376, 46–49.CrossRefGoogle Scholar
  23. 23.
    Khatypov, R. A., Vasilieva, L. G., Fufina, T. Y., Bolgarina, T. I., and Shuvalov, V. A. (2005) Biochemistry (Moscow), 70, 1256–1261.PubMedGoogle Scholar
  24. 24.
    Cohen-Bazire, G., Sistrom, W. R., and Stanier, R. Y. (1957) J. Cell. Comp. Physiol., 49, 25–68.CrossRefGoogle Scholar
  25. 25.
    Shuvalov, V. A., Shkuropatov, A. Ya., Kulakova, S. M., Ismailov, M. A., and Shkuropatova, V. A. (1986) Biochim. Biophys. Acta, 849, 337–346.CrossRefGoogle Scholar
  26. 26.
    Woodbury, N. W., Becker, M., Middendorf, D., and Parson, W. W. (1985) Biochemistry, 24, 7516–7521.PubMedCrossRefGoogle Scholar
  27. 27.
    Fajer, J., Brune, D. C., Davis, M. S., Forman, A., and Spaulding, L. D. (1975) Proc. Natl. Acad. Sci. USA, 72, 4956–4960.PubMedCrossRefGoogle Scholar
  28. 28.
    Du, M., Rosenthal, S. J., Xie, X., DiMagno, T. J., Schmidt, M., Hanson, D. K., Schiffer, M., Norris, J. R., and Fleming, G. R. (1992) Proc. Natl. Acad. Sci. USA, 89, 8517–8521.PubMedCrossRefGoogle Scholar
  29. 29.
    Hamm, P., Gray, K. A., Oesterhelt, D., Feick, R., Scheer, H., and Zinth, W. (1993) Biochim. Biophys. Acta, 1142, 99–105.CrossRefGoogle Scholar
  30. 30.
    Jia, Y., DiMagno, T. J., Chan, C.-K., Wang, Z., Du, M., Hanson, D. K., Schiffer, M., Norris, J. R., Fleming, G. R., and Popov, M. S. (1993) J. Phys. Chem., 97, 13180–13191.CrossRefGoogle Scholar
  31. 31.
    Holzwarth, A. R., and Muller, M. G. (1996) Biochemistry, 35, 11820–11831.PubMedCrossRefGoogle Scholar
  32. 32.
    Wang, H., Lin, S., and Woodbury, N. W. (2008) J. Phys. Chem. B, 112, 14296–14301.PubMedCrossRefGoogle Scholar
  33. 33.
    Yakovlev, A. G., Vasilieva, L. G., Shkuropatov, A. Y., and Shuvalov, V. A. (2011) Biochemistry (Moscow), 76, 1107–1119.PubMedGoogle Scholar
  34. 34.
    Ridge, J. P., Fyfe, P. K., McAuley, K. E., van Brederode, M. E., Robert, B., van Grondelle, R., Isaacs, N. W., Cogdell, R. J., and Jones, M. R. (2000) Biochem. J., 351, 567–578.PubMedCrossRefGoogle Scholar
  35. 35.
    De Rege, P., Williams, S., and Therien, M. (1995) Science, 269, 1409–1413.PubMedCrossRefGoogle Scholar
  36. 36.
    Yakovlev, A. G., Shkuropatov, A. Y., and Shuvalov, V. A. (2002) Biochemistry, 41, 14019–14027.PubMedCrossRefGoogle Scholar
  37. 37.
    Bixon, M., Jortner, J., and Michel-Beyerle, M. E. (1995) Chem. Phys., 197, 389–404.CrossRefGoogle Scholar
  38. 38.
    Shuvalov, V. A., and Yakovlev, A. G. (1998) Membr. Cell Biol., 15, 563–569.Google Scholar
  39. 39.
    Van Stokkum, I. H. M., Beekman, L. M. P., Jones, M. R., van Brederode, M. E., and van Grondelle, R. (1997) Biochemistry, 36, 11360–11368.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • A. Yu. Khmelnitskiy
    • 1
    Email author
  • R. A. Khatypov
    • 1
  • A. M. Khristin
    • 1
  • M. M. Leonova
    • 1
  • L. G. Vasilieva
    • 1
  • V. A. Shuvalov
    • 1
  1. 1.Institute of Basic Biological ProblemsRussian Academy of SciencesPushchino, Moscow RegionRussia

Personalised recommendations