Biochemistry (Moscow)

, Volume 78, Issue 1, pp 37–40 | Cite as

Regulatory functions of microtubules

Mini-Review

Abstract

This mini-review summarizes literature and original data about the role of microtubules in interphase animal cells. Recent data have shown that functioning of microtubules is essential for such diverse phenomena as directional cell movements, distribution of organelles in the cytoplasm, and neuronal memory in the central nervous system. It is suggested that microtubules can act as an important regulatory system in eukaryotic cells. Possible mechanisms of these functions are discussed.

Key words

microtubules cell movements Golgi apparatus neurons memory memory fading 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vasiliev, J. M., Gelfand, I. M., and Domnina, L. V. (1969) Exp. Cell Res.,. 54, 83–93.PubMedCrossRefGoogle Scholar
  2. 2.
    Vasiliev, J. M., Gelfand, I. M., Domnina, L. V., Ivanova, O. Y., Komm, S. G., and Olshevskaya, L. V. (1970) J. Embryol. Exp. Morphol., 24, 625–640.PubMedGoogle Scholar
  3. 3.
    Ivanova, O. Y., Margolis, L. B., Vasiliev, J. M., and Gelfand, I. M. (1976) Exp. Cell. Res., 101, 207–219.PubMedCrossRefGoogle Scholar
  4. 4.
    Vasiliev, J. M. (2007) Ontogenesis, 38, 120–125.Google Scholar
  5. 5.
    Miller, P. M., Folkman, A. W., Maia, A. R., Efimova, N., Efimov, A., and Kaverina, I. (2009) Nat. Cell Biol., 1, 1069–1080.CrossRefGoogle Scholar
  6. 6.
    Craddock, J. A., Tuszynski, J. A., and Hameroff, S. (2012) PloS Comput. Biol., 8, 1–16.CrossRefGoogle Scholar
  7. 7.
    Abercromby, M. (1980) Proc. R. Soc. Lond., B, 207, 129–147.CrossRefGoogle Scholar
  8. 8.
    Chentsov, Y. S. (2004) Introduction into Cellular Biology [in Russian], Akademkniga, Moscow.Google Scholar
  9. 9.
    Chentsov, Y. S. (2010) Cytology with Elements of Cellular Pathology [in Russian], Med. Inform. Agency, Moscow.Google Scholar
  10. 10.
    Kirschner, M., and Mitchison, T. (1986) Cell, 45, 329–342.PubMedCrossRefGoogle Scholar
  11. 11.
    Cole, N. B., Ciaky, N., Marotta, A., Song, J., and Lippingcot-Schwartz, G. (1996) Mol. Biol. Cell, 7, 631–650.PubMedGoogle Scholar
  12. 12.
    Burhardt, J. K. (1998) Biochim. Biophys. Acta, 1404, 113–126.CrossRefGoogle Scholar
  13. 13.
    Thiberg, J., and Moskalewski, S. (1999) Exp. Cell Res., 246, 263–270.CrossRefGoogle Scholar
  14. 14.
    Allan, V. J., Thompson, H. M., and McNiven, M. A. (2002) Nature Cell Biol., 4, E236–242.PubMedCrossRefGoogle Scholar
  15. 15.
    Small, J. V., Geiger, I., Kaverina, I., and Bershadsky, A. (2002) Nature Rev. Mol. Cell Biol., 2, 957.CrossRefGoogle Scholar
  16. 16.
    Joe, P. A., Bannerje, A., and Luden, R. F. (2003) Nature Cell Mol., 5, 599–609.CrossRefGoogle Scholar
  17. 17.
    Rodriguez, O. C., Schaefer, A. W., Mandato, C. A., Forscher, P., Bement, W. M., and Waterman-Storer, C. M. (2003) Nature Cell Biol., 5, 599–609.PubMedCrossRefGoogle Scholar
  18. 18.
    Small, J. V., and Kaverina, I. (2003) Curr. Opin. Cell Biol., 15, 40–47.PubMedCrossRefGoogle Scholar
  19. 19.
    Daly, R. J. (2004) Biochem. J., 382, 13–25.PubMedCrossRefGoogle Scholar
  20. 20.
    Prigozhina, N. L., and Waterman-Storer, C. M. (2004) Curr. Biol., 14, 88–98.PubMedCrossRefGoogle Scholar
  21. 21.
    Rios, R. M., Sanchis, A., Tassin, A. V., Fedriani, C., and Bornens, M. (2004) Cell, 118, 271–272.CrossRefGoogle Scholar
  22. 22.
    Witmann, T., and Waterman-Storer, C. M. (2005) J. Cell Biol., 169, 929–939.CrossRefGoogle Scholar
  23. 23.
    Puthenveedu, M. A., Bachert, C., Puri, S., Lanni, F., and Linstedt, A. D. (2006) Nature Cell Biol., 8, 238–248.PubMedCrossRefGoogle Scholar
  24. 24.
    Efimov, A., Kharitonov, A., Efimova, N., Lonkarek, J., Miller, P. M., Andreeva, N., Gleeson, P., Galjart, N., Maia, A. R., McLeod, I. X., Yates, J. R., III, Maiato, H., Khodiakov, A., Akhmanova, A., and Kaverina, I. (2007) Dev. Cell, 12, 917–930.PubMedCrossRefGoogle Scholar
  25. 25.
    Bomens, M. (2008) Nature Res. Mol. Cell Biol., 9, 874–886.CrossRefGoogle Scholar
  26. 26.
    Feinstein, T. N., and Linstedt, A. D. (2008) Mol. Biol. Cell, 19, 2896–2707.CrossRefGoogle Scholar
  27. 27.
    Tang, D. (2008) J. Biol. Chem., 283, 6085–6094.PubMedCrossRefGoogle Scholar
  28. 28.
    Yadav, S., Puri, S., and Linstedt, A. D. (2009) Mol. Biol. Cell, 20, 1728–1736.PubMedCrossRefGoogle Scholar
  29. 29.
    Rodionov, V. I., Nadezhdina, E. S., Leonova, E. V., Vaisberg, E. A., Kuznetsov, S. A., and Gelfand, V. I. (1985) Exp. Cell Res., 159, 377–387.PubMedCrossRefGoogle Scholar
  30. 30.
    Reilein, A. R., Serpinskaya, A. S., Karcher, R. L., Dujardin, D. L., Valee, R. B., and Gelfand, V. I. (2003) Biochem. Biophys. Res. Commun., 309, 652–658.PubMedCrossRefGoogle Scholar
  31. 31.
    Minin, A. A., Kulik, A. V., Gyoeva, F. K., Li, Y., Goshima, G., and Gelfand, V. I. (2006) J. Cell Sci., 119, 659–669.PubMedCrossRefGoogle Scholar
  32. 32.
    Cronly-Dillon, J., Garden, D., and Birks, C. (1974) J. Exp. Biol., 6, 443–451.Google Scholar
  33. 33.
    Tagchi, M., and Chida, K. (2008) Acta Histochem. Cytochem., 41, 149–155.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  1. 1.Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations