Biochemistry (Moscow)

, Volume 77, Issue 13, pp 1465–1477

Translation initiation in eukaryotes: Versatility of the scanning model

Review

Abstract

It is generally accepted that the initiation of translation in eukaryotes involves the binding of the 40S ribosomal subunit to the capped 5′ end of an mRNA and subsequent scanning of 5′ UTR in search of an initiation codon. However, until recently this has remained a mere hypothesis. This review describes the novel experimental evidence in support of this classical model. Data on the participation of various factors in the eukaryotic initiation process are summarized. The sequence of initiation events is described in light of the latest experimental data. The existing physical models of scanning are presented. Special attention is paid to discussion of alternative models of eukaryotic initiation of translation. It is demonstrated that the canonical mechanism of initiation is more versatile than previously thought.

Key words

eukaryotes initiation of translation scanning 5′ UTR initiation factor 

Abbreviations

eIF

eukaryotic initiation factor

EMCV

encephalomyocarditis virus

IRES

internal ribosome entry site

PABP

poly(A) binding protein

UTR

untranslated region

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kozak, M. (1989) J. Cell Biol., 108, 229–241.PubMedGoogle Scholar
  2. 2.
    Pestova, T. V., and Kolupaeva, V. G. (2002) Genes Dev., 16, 2906–2922.PubMedGoogle Scholar
  3. 3.
    Kaye, N. M., Emmett, K. J., Merrick, W. C., and Jankowsky, E. (2009) J. Biol. Chem., 284, 17742–17750.PubMedGoogle Scholar
  4. 4.
    Yanagiya, A., Svitkin, Y. V., Shibata, S., Mikami, S., Imataka, H., and Sonenberg, N. (2009) Mol. Cell. Biol., 29, 1661–1669.PubMedGoogle Scholar
  5. 5.
    Gross, J. D., Moerke, N. J., von der Haar, T., Lugovskoy, A. A., Sachs, A. B., McCarthy, J. E., and Wagner, G. (2003) Cell, 115, 739–750.PubMedGoogle Scholar
  6. 6.
    Volpon, L., Osborne, M. J., Topisirovic, I., Siddiqui, N., and Borden, K. L. (2006) EMBO J., 25, 5138–5149.PubMedGoogle Scholar
  7. 7.
    Goss, D. J., Carberry, S. E., Dever, T. E., Merrick, W. C., and Rhoads, R. E. (1990) Biochemistry, 29, 5008–5012.PubMedGoogle Scholar
  8. 8.
    Niedzwiecka, A., Marcotrigiano, J., Stepinski, J., Jankowska-Anyszka, M., Wyslouch-Cieszynska, A., Dadlez, M., Gingras, A. C., Mak, P., Darzynkiewicz, E., Sonenberg, N., et al. (2002) J. Mol. Biol., 319, 615–635.PubMedGoogle Scholar
  9. 9.
    Slepenkov, S. V., Korneeva, N. L., and Rhoads, R. E. (2008) J. Biol. Chem., 283, 25227–25237.PubMedGoogle Scholar
  10. 10.
    Muckenthaler, M., Gray, N. K., and Hentze, M. W. (1998) Mol. Cell, 2, 383–388.PubMedGoogle Scholar
  11. 11.
    Jacobson, A. (1996) in Translational Control (Hershey, J. W. B., Mathews, M. B., and Sonenberg, N., eds.) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 451–480.Google Scholar
  12. 12.
    Wells, S. E., Hillner, P. E., Vale, R. D., and Sachs, A. B. (1998) Mol. Cell, 2, 135–140.PubMedGoogle Scholar
  13. 13.
    Kozak, M. (1979) Nature, 280, 82–85.PubMedGoogle Scholar
  14. 14.
    Konarska, M., Filipowicz, W., Domdey, H., and Gross, H. J. (1981) Eur. J. Biochem., 114, 221–227.PubMedGoogle Scholar
  15. 15.
    Gunnery, S., Maivali, U., and Mathews, M. B. (1997) J. Biol. Chem., 272, 21642–21646.PubMedGoogle Scholar
  16. 16.
    Ohlmann, T., Pain, V. M., Wood, W., Rau, M., and Morley, S. J. (1997) EMBO J., 16, 844–855.PubMedGoogle Scholar
  17. 17.
    Hershey, P. E., McWhirter, S. M., Gross, J. D., Wagner, G., Alber, T., and Sachs, A. B. (1999) J. Biol. Chem., 274, 21297–21304.PubMedGoogle Scholar
  18. 18.
    De Gregorio, E., Preiss, T., and Hentze, M. W. (1999) EMBO J., 18, 4865–4874.PubMedGoogle Scholar
  19. 19.
    De Gregorio, E., Baron, J., Preiss, T., and Hentze, M. W. (2001) RNA, 7, 106–113.PubMedGoogle Scholar
  20. 20.
    Von der Haar, T., and McCarthy, J. E. (2002) Mol. Microbiol., 46, 531–544.PubMedGoogle Scholar
  21. 21.
    Browning, K. S., Humphreys, J., Hobbs, W., Smith, G. B., and Ravel, J. M. (1990) J. Biol. Chem., 265, 17967–17973.PubMedGoogle Scholar
  22. 22.
    Kozak, M. (1991) J. Biol. Chem., 266, 19867–19870.PubMedGoogle Scholar
  23. 23.
    Alekhina, O. M., Vassilenko, K. S., and Spirin, A. S. (2007) Nucleic Acids Res., 35, 6547–6559.PubMedGoogle Scholar
  24. 24.
    Vassilenko, K. S., Alekhina, O. M., Dmitriev, S. E., Shatsky, I. N., and Spirin, A. S. (2011) Nucleic Acids Res., 39, 5555–5567.PubMedGoogle Scholar
  25. 25.
    Petrov, A., Kornberg, G., O’Leary, S., Tsai, A., Uemura, S., and Puglisi, J. D. (2011) Curr. Opin. Struct. Biol., 21, 137–145.PubMedGoogle Scholar
  26. 26.
    Ohlmann, T., Rau, M., Morley, S. J., and Pain, V. M. (1995) Nucleic Acids Res., 23, 334–340.PubMedGoogle Scholar
  27. 27.
    Ohlmann, T., Rau, M., Pain, V. M., and Morley, S. J. (1996) EMBO J., 15, 1371–1382.PubMedGoogle Scholar
  28. 28.
    De Gregorio, E., Preiss, T., and Hentze, M. W. (1998) RNA, 4, 828–836.PubMedGoogle Scholar
  29. 29.
    Andreev, D. E., Dmitriev, S. E., Terenin, I. M., Prassolov, V. S., Merrick, W. C., and Shatsky, I. N. (2009) Nucleic Acids Res., 37, 6135–6147.PubMedGoogle Scholar
  30. 30.
    Shatsky, I. N., Dmitriev, S. E., Terenin, I. M., and Andreev, D. E. (2010) Mol. Cells, 30, 285–293.Google Scholar
  31. 31.
    Gilbert, W. V. (2010) J. Biol. Chem., 285, 29033–29038.PubMedGoogle Scholar
  32. 32.
    Andreev, D. E., Terenin, I. M., Dunaevsky, Y. E., Dmitriev, S. E., and Shatsky, I. N. (2006) Mol. Cell. Biol., 26, 3164–3169.PubMedGoogle Scholar
  33. 33.
    Robert, F., and Pelletier, J. (2009) Expert Opin. Ther. Targets, 13, 1279–1293.PubMedGoogle Scholar
  34. 34.
    Dmitriev, S. E., Andreev, D. E., Terenin, I. M., Olovnikov, I. A., Prassolov, V. S., Merrick, W. C., and Shatsky, I. N. (2007) Mol. Cell. Biol., 27, 4685–4697.PubMedGoogle Scholar
  35. 35.
    Berthelot, K., Muldoon, M., Rajkowitsch, L., Hughes, J., and McCarthy, J. E. (2004) Mol. Microbiol., 51, 987–1001.PubMedGoogle Scholar
  36. 36.
    Baim, S. B., and Sherman, F. (1988) Mol. Cell. Biol., 8, 1591–1601.PubMedGoogle Scholar
  37. 37.
    Kozak, M. (1991) Gene Expr., 1, 117–125.PubMedGoogle Scholar
  38. 38.
    Kozak, M., and Shatkin, A. J. (1978) J. Biol. Chem., 253, 6568–6577.PubMedGoogle Scholar
  39. 39.
    Kozak, M. (1978) Cell, 15, 1109–1123.PubMedGoogle Scholar
  40. 40.
    Kozak, M. (1989) Mol. Cell. Biol., 9, 5134–5142.PubMedGoogle Scholar
  41. 41.
    Pelletier, J., and Sonenberg, N. (1985) Cell, 40, 515–526.PubMedGoogle Scholar
  42. 42.
    Kozak, M. (1984) Nucleic Acids Res., 12, 3873–3893.PubMedGoogle Scholar
  43. 43.
    Kozak, M. (1983) Cell, 34, 971–978.PubMedGoogle Scholar
  44. 44.
    Pestova, T. V., Borukhov, S. I., and Hellen, C. U. (1998) Nature, 394, 854–859.PubMedGoogle Scholar
  45. 45.
    Sonenberg, N. (1991) Trends Genet., 7, 105–106.PubMedGoogle Scholar
  46. 46.
    Sonenberg, N. (1993) Gene Expr., 3, 317–323.PubMedGoogle Scholar
  47. 47.
    Jackson, R. J. (1996) in Translational Control (Hershey, J. W. B., Mathews, M. B., and Sonenberg, N., eds.) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 71–112.Google Scholar
  48. 48.
    Shirokikh, N. E., and Spirin, A. S. (2008) Proc. Natl. Acad. Sci. USA, 105, 10738–10743.PubMedGoogle Scholar
  49. 49.
    Passmore, L. A., Schmeing, T. M., Maag, D., Applefield, D. J., Acker, M. G., Algire, M. A., Lorsch, J. R., and Ramakrishnan, V. (2007) Mol. Cell, 26, 41–50.PubMedGoogle Scholar
  50. 50.
    Pisarev, A. V., Kolupaeva, V. G., Yusupov, M. M., Hellen, C. U., and Pestova, T. V. (2008) EMBO J., 27, 1609–1621.PubMedGoogle Scholar
  51. 51.
    Mitchell, S. F., Walker, S. E., Algire, M. A., Park, E. H., Hinnebusch, A. G., and Lorsch, J. R. (2010) Mol. Cell, 39, 950–962.PubMedGoogle Scholar
  52. 52.
    Jackson, R. J. (1991) Eur. J. Biochem., 200, 285–294.PubMedGoogle Scholar
  53. 53.
    Svitkin, Y. V., Pause, A., Haghighat, A., Pyronnet, S., Witherell, G., Belsham, G. J., and Sonenberg, N. (2001) RNA, 7, 382–394.PubMedGoogle Scholar
  54. 54.
    Kozak, M. (1980) Cell, 22, 459–467.PubMedGoogle Scholar
  55. 55.
    Sarabhai, A., and Brenner, S. (1967) J. Mol. Biol., 27, 145–162.PubMedGoogle Scholar
  56. 56.
    Adhin, M. R., and van Duin, J. (1990) J. Mol. Biol., 213, 811–818.PubMedGoogle Scholar
  57. 57.
    Feynman, R., Leighton, R., and Sands, M. (1963) The Feynman Lectures on Physics. Reading, MA: Addison-Wesley Publishing Company.Google Scholar
  58. 58.
    Cordova, N. J., Ermentrout, B., and Oster, G. F. (1992) Proc. Natl. Acad. Sci. USA, 89, 339–343.PubMedGoogle Scholar
  59. 59.
    Gelles, J., and Landick, R. (1998) Cell, 93, 13–16.PubMedGoogle Scholar
  60. 60.
    Yanagida, T., Ueda, M., Murata, T., Esaki, S., and Ishii, Y. (2007) Biosystems, 88, 228–242.PubMedGoogle Scholar
  61. 61.
    Spirin, A. S. (2002) FEBS Lett., 514, 2–10.PubMedGoogle Scholar
  62. 62.
    Spirin, A. S. (2004) RNA Biol., 1, 3–9.PubMedGoogle Scholar
  63. 63.
    Spirin, A. S. (2009) J. Biol. Chem., 284, 21103–21119.PubMedGoogle Scholar
  64. 64.
    Spirin, A. S., and Finkelstein, A. F. (2011) in Molecular Machines in Biology: Workshop of the Cell (Frank, J., ed.) Cambridge University Press, Cambridge, UK, pp. 158–190.Google Scholar
  65. 65.
    Jackson, R. J. (2000) in Translational Control (Sonenberg, N., Hershey, J. W. B., and Mathews, M. B., eds.) Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp. 127–183.Google Scholar
  66. 66.
    Hinnebusch, A. G. (1997) J. Biol. Chem., 272, 21661–21664.PubMedGoogle Scholar
  67. 67.
    Kolb, V. A., Makeyev, E. V., and Spirin, A. S. (1994) EMBO J., 13, 3631–3637.PubMedGoogle Scholar
  68. 68.
    Kolb, V. A., Makeyev, E. V., and Spirin, A. S. (2000) J. Biol. Chem., 275, 16597–16601.PubMedGoogle Scholar
  69. 69.
    Pisareva, V. P., Pisarev, A. V., Komar, A. A., Hellen, C. U., and Pestova, T. V. (2008) Cell, 135, 1237–1250.PubMedGoogle Scholar
  70. 70.
    Rozen, F., Edery, I., Meerovitch, K., Dever, T. E., Merrick, W. C., and Sonenberg, N. (1990) Mol. Cell. Biol., 10, 1134–1144.PubMedGoogle Scholar
  71. 71.
    Siridechadilok, B., Fraser, C. S., Hall, R. J., Doudna, J. A., and Nogales, E. (2005) Science, 310, 1513–1515.PubMedGoogle Scholar
  72. 72.
    Marintchev, A., Edmonds, K. A., Marintcheva, B., Hendrickson, E., Oberer, M., Suzuki, C., Herdy, B., Sonenberg, N., and Wagner, G. (2009) Cell, 136, 447–460.PubMedGoogle Scholar
  73. 73.
    Nielsen, K. H., Behrens, M. A., He, Y., Oliveira, C. L., Jensen, L. S., Hoffmann, S. V., Pedersen, J. S., and Andersen, G. R. (2011) Nucleic Acids Res., 39, 2678–2689.PubMedGoogle Scholar
  74. 74.
    Kozak, M., and Shatkin, A. J. (1977) J. Biol. Chem., 252, 6895–6908.PubMedGoogle Scholar
  75. 75.
    Kozak, M. (1977) Nature, 269, 391–394.PubMedGoogle Scholar
  76. 76.
    Spirin, A. S. (2009) Biochemistry, 48, 10688–10692.PubMedGoogle Scholar
  77. 77.
    Altmann, M., Muller, P. P., Wittmer, B., Ruchti, F., Lanker, S., and Trachsel, H. (1993) EMBO J., 12, 3997–4003.PubMedGoogle Scholar
  78. 78.
    Coppolecchia, R., Buser, P., Stotz, A., and Linder, P. (1993) EMBO J., 12, 4005–4011.PubMedGoogle Scholar
  79. 79.
    Abramson, R. D., Dever, T. E., Lawson, T. G., Ray, B. K., Thach, R. E., and Merrick, W. C. (1987) J. Biol. Chem., 262, 3826–3832.PubMedGoogle Scholar
  80. 80.
    Nishiyama, M., Higuchi, H., Ishii, Y., Taniguchi, Y., and Yanagida, T. (2003) Biosystems, 71, 145–156.PubMedGoogle Scholar
  81. 81.
    Kitamura, K., and Yanagida, T. (2003) Biosystems, 71, 101–110.PubMedGoogle Scholar
  82. 82.
    Matsuda, D., and Dreher, T. W. (2006) RNA, 12, 1338–1349.PubMedGoogle Scholar
  83. 83.
    Williams, M. A., and Lamb, R. A. (1989) J. Virol., 63, 28–35.PubMedGoogle Scholar
  84. 84.
    Kozak, M. (1989) Mol. Cell. Biol., 9, 5073–5080.PubMedGoogle Scholar
  85. 85.
    Kozak, M. (1991) Gene Expr., 1, 111–115.PubMedGoogle Scholar
  86. 86.
    Kozak, M. (1998) Nucleic Acids Res., 26, 4853–4859.PubMedGoogle Scholar
  87. 87.
    Boeck, R., Curran, J., Matsuoka, Y., Compans, R., and Kolakofsky, D. (1992) J. Virol., 66, 1765–1768.PubMedGoogle Scholar
  88. 88.
    Kozak, M. (1986) Proc. Natl. Acad. Sci. USA, 83, 2850–2854.PubMedGoogle Scholar
  89. 89.
    Cigan, A. M., and Donahue, T. F. (1987) Gene, 59, 1–18.PubMedGoogle Scholar
  90. 90.
    Oliveira, C. C., van den Heuvel, J. J., and McCarthy, J. E. (1993) Mol. Microbiol., 9, 521–532.PubMedGoogle Scholar
  91. 91.
    Vega Laso, M. R., Zhu, D., Sagliocco, F., Brown, A. J., Tuite, M. F., and McCarthy, J. E. (1993) J. Biol. Chem., 268, 6453–6462.PubMedGoogle Scholar
  92. 92.
    Chuang, R. Y., Weaver, P. L., Liu, Z., and Chang, T. H. (1997) Science, 275, 1468–1471.PubMedGoogle Scholar
  93. 93.
    Iost, I., Dreyfus, M., and Linder, P. (1999) J. Biol. Chem., 274, 17677–17683.PubMedGoogle Scholar
  94. 94.
    Yang, Q., and Jankowsky, E. (2005) Biochemistry, 44, 13591–13601.PubMedGoogle Scholar
  95. 95.
    De la Cruz, J., Iost, I., Kressler, D., and Linder, P. (1997) Proc. Natl. Acad. Sci. USA, 94, 5201–5206.PubMedGoogle Scholar
  96. 96.
    Marsden, S., Nardelli, M., Linder, P., and McCarthy, J. E. (2006) J. Mol. Biol., 361, 327–335.PubMedGoogle Scholar
  97. 97.
    Tarn, W. Y., and Chang, T. H. (2009) RNA Biol., 6, 17–20.PubMedGoogle Scholar
  98. 98.
    Parsyan, A., Shahbazian, D., Martineau, Y., Petroulakis, E., Alain, T., Larsson, O., Mathonnet, G., Tettweiler, G., Hellen, C. U., Pestova, T. V., et al. (2009) Proc. Natl. Acad. Sci. USA, 106, 22217–22222.PubMedGoogle Scholar
  99. 99.
    Abaeva, I. S., Marintchev, A., Pisareva, V. P., Hellen, C. U., and Pestova, T. V. (2011) EMBO J., 30, 115–129.PubMedGoogle Scholar
  100. 100.
    Kozak, M. (1987) Nucleic Acids Res., 15, 8125–8148.PubMedGoogle Scholar
  101. 101.
    Kozak, M. (1986) Cell, 44, 283–292.PubMedGoogle Scholar
  102. 102.
    Kozak, M. (1997) EMBO J., 16, 2482–2492.PubMedGoogle Scholar
  103. 103.
    Shabalina, S. A., Ogurtsov, A. Y., Rogozin, I. B., Koonin, E. V., and Lipman, D. J. (2004) Nucleic Acids Res., 32, 1774–1782.PubMedGoogle Scholar
  104. 104.
    Cigan, A. M., Pabich, E. K., and Donahue, T. F. (1988) Mol. Cell. Biol., 8, 2964–2975.PubMedGoogle Scholar
  105. 105.
    Yun, D. F., Laz, T. M., Clements, J. M., and Sherman, F. (1996) Mol. Microbiol., 19, 1225–1239.PubMedGoogle Scholar
  106. 106.
    Pisarev, A. V., Kolupaeva, V. G., Pisareva, V. P., Merrick, W. C., Hellen, C. U., and Pestova, T. V. (2006) Genes Dev., 20, 624–636.PubMedGoogle Scholar
  107. 107.
    Chen, S. J., Lin, G., Chang, K. J., Yeh, L. S., and Wang, C. C. (2008) J. Biol. Chem., 283, 3173–3180.PubMedGoogle Scholar
  108. 108.
    Clements, J. M., Laz, T. M., and Sherman, F. (1988) Mol. Cell. Biol., 8, 4533–4536.PubMedGoogle Scholar
  109. 109.
    Peabody, D. S. (1989) J. Biol. Chem., 264, 5031–5035.PubMedGoogle Scholar
  110. 110.
    Maag, D., Algire, M. A., and Lorsch, J. R. (2006) J. Mol. Biol., 356, 724–737.PubMedGoogle Scholar
  111. 111.
    Unbehaun, A., Borukhov, S. I., Hellen, C. U., and Pestova, T. V. (2004) Genes Dev., 18, 3078–3093.PubMedGoogle Scholar
  112. 112.
    Lomakin, I. B., Kolupaeva, V. G., Marintchev, A., Wagner, G., and Pestova, T. V. (2003) Genes Dev., 17, 2786–2797.PubMedGoogle Scholar
  113. 113.
    Maag, D., Fekete, C. A., Gryczynski, Z., and Lorsch, J. R. (2005) Mol. Cell, 17, 265–275.PubMedGoogle Scholar
  114. 114.
    Cheung, Y. N., Maag, D., Mitchell, S. F., Fekete, C. A., Algire, M. A., Takacs, J. E., Shirokikh, N., Pestova, T., Lorsch, J. R., and Hinnebusch, A. G. (2007) Genes Dev., 21, 1217–1230.PubMedGoogle Scholar
  115. 115.
    Yu, Y., Marintchev, A., Kolupaeva, V. G., Unbehaun, A., Veryasova, T., Lai, S. C., Hong, P., Wagner, G., Hellen, C. U., and Pestova, T. V. (2009) Nucleic Acids Res., 37, 5167–5182.PubMedGoogle Scholar
  116. 116.
    Fekete, C. A., Mitchell, S. F., Cherkasova, V. A., Applefield, D., Algire, M. A., Maag, D., Saini, A. K., Lorsch, J. R., and Hinnebusch, A. G. (2007) EMBO J., 26, 1602–1614.PubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Institute of Protein ResearchRussian Academy of SciencesPushchino, Moscow RegionRussia

Personalised recommendations