Biochemistry (Moscow)

, Volume 77, Issue 11, pp 1326–1338

Effect of affinity Sorbent on proteomic profiling of isatin-binding proteins of mouse brain

  • O. A. Buneeva
  • A. T. Kopylov
  • O. V. Tikhonova
  • V. G. Zgoda
  • A. E. Medvedev
  • A. I. Archakov


Use of small molecules for isolation of particular sub-proteomes is often complicated by the need for chemical modification of a parent compound for affinity sorbent preparation. Isatin (indoledione-2,3) is an endogenous indole that exhibits a wide spectrum of biological activities. Using 5-aminocaproylisatin for proteomic profiling of fractionated rodent brain homogenates, we previously identified more than sixty individual proteins. However, proteins tested in an optical biosensor study for validation of their isatin-binding capacity demonstrated different affinity for immobilized 5-aminocaproylisatin and 5-aminoisatin. In this study, we comparatively evaluated proteomic profiles of isatin-binding proteins separated using both isatin analogs as the affinity ligands. The total number of identified proteins was higher with the shorter isatin analog (88 versus 66), and only 22 proteins were identical in the two proteomic profiles. Thus, proteomic profiling of brain isatin-binding proteins is significantly influenced by the length of the spacer between the amino group used for affinity ligand coupling to Sepharose and the isatin moiety. This suggests that the actual number of brain proteins interacting with endogenous (unmodified) isatin still remains underestimated due to different affinity of proteins for the isatin analogs used for the affinity-based proteomic profiling.

Key words

small molecule affinity chromatography proteomic profiling sub-proteome isolation brain isatin isatin-binding proteins 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Gilar, M., Bouvier, E. S., and Compton, B. J. (2001) J. Chromatogr. A., 909, 111–135.PubMedCrossRefGoogle Scholar
  2. 2.
    Medvedev, A., Kopylov, A., Buneeva, O., Zgoda, V., and Archakov, A. (2012) Proteomics, 12, 621–637.PubMedCrossRefGoogle Scholar
  3. 3.
    Lee, W. C., and Lee, K. H. (2004) Anal. Biochem., 324, 1–10.PubMedCrossRefGoogle Scholar
  4. 4.
    Pernemalm, M., Lewensohn, R., and Lehtio, J. (2009) Proteomics, 9, 1420–1427.PubMedCrossRefGoogle Scholar
  5. 5.
    Medvedev, A. E., Clow, A., Sandler, M., and Glover, V. (1996) Biochem. Pharmacol., 52, 385–391.PubMedCrossRefGoogle Scholar
  6. 6.
    Medvedev, A., Igosheva, N., Crumeyrolle-Arias, M., and Glover, V. (2005) Stress, 8, 175–183.PubMedCrossRefGoogle Scholar
  7. 7.
    Medvedev, A., Buneeva, O., and Glover, V. (2007) Biol. Targets Therap., 1, 151–162.Google Scholar
  8. 8.
    Pandeya, S. N., Smitha, S., Jyoti, M., and Sridhar, S. K. (2005) Acta Pharm., 55, 27–46.PubMedGoogle Scholar
  9. 9.
    Vine, K. L., Matesic, L., Locke, J. M., Ranson, M., and Skropeta, D. (2009) Anticancer Agents Med. Chem., 9, 397–414.PubMedCrossRefGoogle Scholar
  10. 10.
    Buneeva, O., Gnedenko, O., Zgoda, V., Kopylov, A., Glover, V., Ivanov, A., Medvedev, A., and Archakov, A. (2010) Proteomics, 10, 23–37.PubMedCrossRefGoogle Scholar
  11. 11.
    Crumeyrolle-Arias, M., Buneeva, O., Zgoda, V., Kopylov, A., Cardona, A., Tournaire, M. C., Pozdnev, V., Glover, V., and Medvedev, A. (2009) J. Neurosci. Res., 87, 2763–2772.PubMedCrossRefGoogle Scholar
  12. 12.
    Medvedev, A., Buneeva, O., Gnedenko, O., Fedchenko, V., Medvedeva, M., Ivanov, Y., Glover, V., and Sandler, M. (2006) J. Neural Transm. Suppl., 71, 97–103.PubMedCrossRefGoogle Scholar
  13. 13.
    Ivanov, Yu. D., Panova, N. G., Gnedenko, O. V., Buneeva, O. A., Medvedev, A. E., and Archakov, A. I. (2002) Vopr. Med. Khim., 48, 73–83.PubMedGoogle Scholar
  14. 14.
    Medvedev, A. E., Goodwin, B. L., Sandler, M., and Glover, V. (1999) Biochem. Pharmacol., 57, 913–915.PubMedCrossRefGoogle Scholar
  15. 15.
    Kapp, E. A., Schutz, F., Connolly, L. M., Chakel, J. A., Meza, J. E., Miller, C. A., Fenyo, D., Eng, J. K., Adkins, J. N., Omenn, G. S., and Simpson, R. J. (2005) Proteomics, 5, 3475–3490.PubMedCrossRefGoogle Scholar
  16. 16.
    Ishihama, Y., Sato, T., Tabata, T., Miyamoto, N., Sagane, K., Nagasu, T., and Oda, Y. (2005) Nat. Biotechnol., 23, 617–621.PubMedCrossRefGoogle Scholar
  17. 17.
    Pang, F. Y., Hucklebridge, F. H., Forster, G., Tan, K., and Clow, A. (1996) Stress Med., 12, 35–42.CrossRefGoogle Scholar
  18. 18.
    Burd, C. G., Swanson, M. S., Gorlach, M., and Dreyfuss, G. (1989) Proc. Natl. Acad. Sci. USA, 86, 9788–9792.PubMedCrossRefGoogle Scholar
  19. 19.
    Entelis, N., Brandina, I., Kamenski, P., Krasheninnikov, I. A., Martin, R. P., and Tarassov, I. (2006) Genes Dev., 20, 1609–1620.PubMedCrossRefGoogle Scholar
  20. 20.
    Cookson, M., and Bandmann, O. (2010) Human Mol. Genet., 19, R21–R27.CrossRefGoogle Scholar
  21. 21.
    Buneeva, O. A., and Medvedev, A. E. (2006) Biochemistry (Moscow), 71, 851–860.CrossRefGoogle Scholar
  22. 22.
    Ren, Y., Zhao, J., and Feng, J. (2003) J. Neurosci., 23, 3316–3324.PubMedGoogle Scholar
  23. 23.
    Takahashi, R., and Imai, Y. (2003) J. Neurol., Suppl. 3, III25-9.Google Scholar
  24. 24.
    Moore, D. J., West, A. B., Dikeman, D. A., Dawson, V. L., and Dawson, T. M. (2008) J. Neurochem., 105, 1806–1819.PubMedCrossRefGoogle Scholar
  25. 25.
    Zhou, Y., Zhao, Z. Q., and Xie, J. X. (2001) Brain Res., 917, 127–132.PubMedCrossRefGoogle Scholar
  26. 26.
    Hamaue, N., Minami, M., Terado, M., Hirafuji, M., Endo, T., Machida, M., Hiroshige, T., Ogata, A., Tashiro, K., Saito, H., and Parves, S. H. (2004) NeuroToxicology, 25, 205–213.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • O. A. Buneeva
    • 1
  • A. T. Kopylov
    • 1
  • O. V. Tikhonova
    • 1
  • V. G. Zgoda
    • 1
  • A. E. Medvedev
    • 1
  • A. I. Archakov
    • 1
  1. 1.Orekhovich Institute of Biomedical ChemistryRussian Academy of Medical SciencesMoscowRussia

Personalised recommendations