Biochemistry (Moscow)

, Volume 77, Issue 11, pp 1248–1257

Redox control of cardiac rhythm

Review

Abstract

The rhythm of cardiac beats is generated by pacemaker cells differing from other cardiomyocytes by the presence of slow diastolic depolarization. Consistently activated transmembrane ionic currents provide cyclic excitation of pacemakers, forming the original “membrane clocks”. A new concept has been forwarded in the last decade according to which periodic fluctuations in myoplasmic Ca2+ level (“calcium clocks”) not only influence a course of “membrane clocks”, but they also can serve as independent generators of the rhythm. Transport of Ca2+ in cells is under constant influence of active forms of oxygen and nitrogen. Both superoxide and NO in moderate doses facilitate Ca2+ output from the sarcoplasmic reticulum, accelerating the course of “calcium clocks”, but in higher doses they have opposite effect that may be neutralized mainly by reduced glutathione. The control of cardiac rhythm by active forms of oxygen and nitrogen represents a feedback mechanism by which mitochondria and NO-synthases support Ca2+ homeostasis in cells that can be temporarily disturbed under mechanical loads or hypoxia.

Key words

diastolic depolarization Ca2+ transport ryanodine receptor sarcoplasmic reticulum mitochondria NO-synthases 

Abbreviations

ETC

electron transport chain

GSNO

S-nitrosoglutathione

GSNOR

S-nitrosoglutathione reductase

NCX

sarcolemmal Na+/Ca2+-exchange mechanism

NOS

NO-synthase

ROS

reactive oxygen species

RyR

ryanodine receptor

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lakatta, E. G., Maltsev, V. A., Bogdanov, K. Y., Stern, M. D., and Vinogradova, T. M. (2003) Circ. Res., 92, e45–e50.PubMedCrossRefGoogle Scholar
  2. 2.
    Maltsev, V. A., and Lakatta, E. G. (2007) Heart Lung Circ., 16, 335–348.PubMedCrossRefGoogle Scholar
  3. 3.
    Rozenshtraukh, L. V. (2007) in Course of Classic Physiology (Natochin, Yu. V., and Tkachuk, V. A., eds.) Geotar-Media, Moscow, pp. 225–262.Google Scholar
  4. 4.
    Bogdanov, K. Y., Vinogradova, T. M., and Lakatta, E. G. (2001) Circ. Res., 88, 1254–1258.PubMedCrossRefGoogle Scholar
  5. 5.
    Huser, J., Blatter, L. A., and Lipsius, S. L. (2000) J. Physiol., 524, 415–422.PubMedCrossRefGoogle Scholar
  6. 6.
    Maltsev, V. A., and Lakatta, E. G. (2009) Am. J. Physiol. Heart. Circ. Physiol., 296, H594–H615.PubMedCrossRefGoogle Scholar
  7. 7.
    Lakatta, E. G., Maltsev, V. A., and Vinogradova, T. M. (2010) Circ. Res., 106, 659–673.PubMedCrossRefGoogle Scholar
  8. 8.
    Vinogradova, T. M., Lyashkov, A. E., Zhu, W., Ruknudin, A. M., Sirenko, S., Yang, D., Deo, S., Barlow, M., Johnson, S., Caffrey, J. L., Zhou, Y. Y., Xiao, R. P., Cheng, H., Stern, M. D., Maltsev, V. A., and Lakatta, E. G. (2006) Circ. Res., 98, 505–514.PubMedCrossRefGoogle Scholar
  9. 9.
    Liu, J., Sirenko, S., Juhaszova, M., Ziman, B., Shetty, V., Rain, S., Shukla, S., Spurgeon, H. A., Vinogradova, T. M., Maltsev, V. A., and Lakatta, E. G. (2011) J. Mol. Cell. Cardiol., 51, 730–739.PubMedCrossRefGoogle Scholar
  10. 10.
    Yaniv, Y., Maltsev, V. A., Escobar, A. L., Spurgeon, H. A., Ziman, B. D., Stern, M. D., and Lakatta, E. G. (2011) J. Mol. Cell. Cardiol., 51, 902–905.PubMedCrossRefGoogle Scholar
  11. 11.
    Gyorke, S., and Terentyev, D. (2008) Cardiovasc. Res., 77, 245–255.PubMedCrossRefGoogle Scholar
  12. 12.
    Napolitano, C., and Priori, S. G. (2007) Heart Rhythm, 4, 675–678.PubMedCrossRefGoogle Scholar
  13. 13.
    Yano, M. (2008) Circ. J., 72, 509–514.PubMedCrossRefGoogle Scholar
  14. 14.
    Hidalgo, C., Aracena, P., Sanchez, G., and Donoso, P. (2002) Biol. Res., 35, 183–193.PubMedCrossRefGoogle Scholar
  15. 15.
    Bassani, J. W., Yuan, W., and Bers, D. M. (1995) Am. J. Physiol., 268, C1313–C1319.PubMedGoogle Scholar
  16. 16.
    Bers, D. M. (2001) Excitation-Contraction Coupling and Cardiac Contractile Force, 2nd Edn., Kluwer Academic Publishers, Norwell, Mass.CrossRefGoogle Scholar
  17. 17.
    Sun, J., Yamaguchi, N., Xu, L., Eu, J. P., Stamler, J. S., and Meissner, G. (2008) Biochemistry, 47, 13985–13990.PubMedCrossRefGoogle Scholar
  18. 18.
    Yan, Y., Liu, J., Wei1, C., Li, K., Xie, W., Wang, Y., and Cheng, H. (2008) Cardiovasc. Res., 77, 432–441.PubMedCrossRefGoogle Scholar
  19. 19.
    Marengo, J. J., Hidalgo, C., and Bull, R. (1998) Biophys. J., 74, 1263–1277.PubMedCrossRefGoogle Scholar
  20. 20.
    Xie, H., and Zhu, P.-H. (2006) Biophys. J., 91, 2882–2891.PubMedCrossRefGoogle Scholar
  21. 21.
    Zima, A. V., and Blatter, L. A. (2006) Cardiovasc. Res., 71, 310–321.PubMedCrossRefGoogle Scholar
  22. 22.
    Turrens, J. F. (2003) J. Physiol., 552, 335–344.PubMedCrossRefGoogle Scholar
  23. 23.
    Duchen, M. R. (2000) J. Physiol. Lond., 529, 57–68.PubMedCrossRefGoogle Scholar
  24. 24.
    Csordas, G., Thomas, A. P., and Hajnoczky, G. (2001) Trends Cardiovasc. Med., 11, 269–275.PubMedCrossRefGoogle Scholar
  25. 25.
    Zorov, D. B., Filburn, C. R., Klotz, L. O., Zweier, J. L., and Sollott, S. J. (2000) J. Exp. Med., 192, 1001–1014.PubMedCrossRefGoogle Scholar
  26. 26.
    Chernyak, B. V. (1997) Biosci. Rep., 17, 293–302.PubMedCrossRefGoogle Scholar
  27. 27.
    Iribe, G., Ward, C. W., Camelliti, P., Bollensdorff, C., Mason, F., Burton, R. A., Garny, A., Morphew, M. K., Hoenger, A., Lederer, W. J., and Kohl, P. (2009) Circ. Res., 104, 787–795.PubMedCrossRefGoogle Scholar
  28. 28.
    Belmonte, S., and Morad, M. (2008) J. Physiol., 586, 1379–1397.PubMedCrossRefGoogle Scholar
  29. 29.
    Donoso, P., Sanchez, G., Bull, R., and Hidalgo, C. (2011) Front. Biosci., 16, 553–567.PubMedCrossRefGoogle Scholar
  30. 30.
    Oba, T., Maeno, Y., Nagao, M., Sakuma, N., and Murayama, T. (2008) Am. J. Physiol. Heart. Circ. Physiol., 294, H121–H133.PubMedCrossRefGoogle Scholar
  31. 31.
    Poteser, M., Romanin, C., Schreibmayer, W., Mayer, B., and Groschner, K. (2001) J. Biol. Chem., 276, 14797–14803.PubMedCrossRefGoogle Scholar
  32. 32.
    Sears, C. E., Bryant, S. M., Ashley, E. A., Lygate, C. A., Rakovic, S., Wallis, H. L., et al. (2003) Circ. Res., 92, e52–e59.PubMedCrossRefGoogle Scholar
  33. 33.
    Lunz, W., Natali, A. J., Carneiro, M. A., Dos Santos Aggum Capettini, L., Baldo, M. P., de Souza, M. O., Quintao, J. F., Bozi, L. H., Lemos, V. S., and Mill, J. G. (2011) Can. J. Physiol. Pharmacol., 89, 305–310.PubMedCrossRefGoogle Scholar
  34. 34.
    Barouch, L. A., Harrison, R. W., Skaf, M. W., Rosas, G. O., Cappola, T. P., Kobeissi, Z. A., Hobai, I. A., Lemmon, C. A., Burnett, A. L., O’Rourke, B., Rodriguez, E. R., Huang, P. L., Lima, J. A., Berkowitz, D. E., and Hare, J. M. (2002) Nature, 416, 337–339.PubMedCrossRefGoogle Scholar
  35. 35.
    Xu, L., Eu, J. P., Meissner, G., and Stamler, J. S. (1998) Science, 279, 234–237.PubMedCrossRefGoogle Scholar
  36. 36.
    Wang, H., Viatchenko-Karpinski, S., Sun, J., Gyorke, I., Benkusky, N. A., Kohr, M. J., Valdivia, H. H., Murphy, E., Gyorke, S., and Ziolo, M. T. (2010) J. Physiol., 588, 2905–2917.PubMedCrossRefGoogle Scholar
  37. 37.
    Gonzalez, D. R., Beigi, F., Treuer, A. V., and Hare, J. M. (2007) Proc. Natl. Acad. Sci. USA, 104, 20612–20617.PubMedCrossRefGoogle Scholar
  38. 38.
    Lima, B., Forrester, M. T., Hess, D. T., and Stamler, J. S. (2010) Circ. Res., 106, 633–646.PubMedCrossRefGoogle Scholar
  39. 39.
    Wehrens, X. H., Lehnart, S. E., and Marks, A. R. (2005) Annu. Rev. Physiol., 67, 69–98.PubMedCrossRefGoogle Scholar
  40. 40.
    Ziolo, M. T., Katoh, H., and Bers, D. M. (2001) Am. J. Physiol. Heart. Circ. Physiol., 281, H2295–H2303.PubMedGoogle Scholar
  41. 41.
    Tocchetti, C. G., Wang, W., Froehlich, J. P., Huke, S., Aon, M. A., Wilson, G. M., Di Benedetto, G., O’Rourke, B., Gao, W. D., Wink, D. A., Toscano, J. P., Zaccolo, M., Bers, D. M., and Hector, H. (2007) Circ. Res., 100, 96–104.PubMedCrossRefGoogle Scholar
  42. 42.
    Jensen, D. E., Belka, G. K., and Du Bois, G. C. (1998) Biochem. J., 331, 659–668.PubMedGoogle Scholar
  43. 43.
    Sears, C. E., Ashley, E. A., and Casadei, B. (2004) Philos. Trans. Roy. Soc. Lond. B, 359, 1021–1044.CrossRefGoogle Scholar
  44. 44.
    Schmidt, H. H., Pollock, J. S., Nakane, M., Forstermann, U., and Murad, F. (1992) Cell Calcium, 13, 427–434.PubMedCrossRefGoogle Scholar
  45. 45.
    Pinsky, D. J., Patton, S., Mesaros, S., Brovkovych, V., Kubaszewski, E., Grunfeld, S., and Malinski, T. (1997) Circ. Res., 81, 372–379.PubMedCrossRefGoogle Scholar
  46. 46.
    Hare, J. M. (2003) J. Mol. Cell. Cardiol., 35, 719–729.PubMedCrossRefGoogle Scholar
  47. 47.
    Kapelko, V. I. (1981) Byul. VKNTs, 1, 103–110.Google Scholar
  48. 48.
    Denton, R. M., McCormack, J. G., and Edgell, N. J. (1980) Biochem. J., 190, 107–117.PubMedGoogle Scholar
  49. 49.
    Jouaville, L. S., Pinton, P., Bastianutto, C., Rutter, G. A., and Rizzuto, R. (1999) Proc. Natl. Acad. Sci. USA, 96, 13807–13812.PubMedCrossRefGoogle Scholar
  50. 50.
    Rimessi, A., Giorgi, C., Pinton, P., and Rizzuto, R. (2008) Biochim. Biophys. Acta, 1777, 808–816.PubMedCrossRefGoogle Scholar
  51. 51.
    Gunter, T. E., Yule, D. I., Gunter, K. K., Eliseev, R. A., and Salter, J. D. (2004) FEBS Lett., 567, 96–102.PubMedCrossRefGoogle Scholar
  52. 52.
    Slezak, J., Tribulova, N., Pristacova, J., Uhrik, B., Thomas, T., Khaper, N., Kaul, N., and Singal, P. K. (1995) Am. J. Pathol., 147, 772–781.PubMedGoogle Scholar
  53. 53.
    Wang, P., and Zweier, J. L. (1996) J. Biol. Chem., 271, 29223–29230.PubMedCrossRefGoogle Scholar
  54. 54.
    Takata, T., Kimura, J., Tsuchiya, Y., Naito, Y., and Watanabe, Y. (2011) Nitric Oxide, 25, 145–152.PubMedCrossRefGoogle Scholar
  55. 55.
    Khan, S. A., Lee, K., Minhas, K. M., Gonzalez, D. R., Raju, S. V. Y., Tejani, A. D., et al. (2004) Proc. Natl. Acad. Sci. USA, 101, 15944–15948.PubMedCrossRefGoogle Scholar
  56. 56.
    Cote, C. G., Yu, F. S., Zulueta, J. J., Vosatka, R. J., and Hassoun, P. M. (1996) Am. J. Physiol. Lung Cell. Mol. Physiol., 15, L869–L874.Google Scholar
  57. 57.
    Clancy, R. M., Leszczynskapiziak, J., and Abramson, S. B. (1992) J. Clin. Invest., 90, 1116–1121.PubMedCrossRefGoogle Scholar
  58. 58.
    Xie, H., and Zhu, P.-H. (2006) Biophys. J., 91, 2882–2891.PubMedCrossRefGoogle Scholar
  59. 59.
    Skulachev, V. P. (2005) IUBMB Life, 57, 305–310.PubMedCrossRefGoogle Scholar
  60. 60.
    Skulachev, V. P. (2007) Biochemistry (Moscow), 72, 1385–1396.Google Scholar
  61. 61.
    Bakeeva, L. E., Barskov, I. V., Egorov, M. V., Isaev, N. K., Kapelko, V. I., Kazachenko, A. V., Kirpatovsky, V. I., Kozlovsky, S. V., Lakomkin, V. L., Levina, S. V., Pisarenko, O. I., Plotnikov, E. Y., Saprunova, V. B., Serebryakova, L. I., Skulachev, M. V., Stelmashook, E. V., Studneva, I. M., Tskitishvili, O. V., Vasilyeva, A. K., Victorov, I. V., Zorov, D. B., and Skulachev, V. P. (2008) Biochemistry (Moscow), 73, 1288–1299.Google Scholar
  62. 62.
    Lakomkin, V. L., and Kapelko, V. I. (2009) Kardiologiya, 49, 55–60.PubMedGoogle Scholar
  63. 63.
    Lakomkin, V. L., Abramov, A. A., and Kapelko, V. I. (2011) Kardiologiya, 51, 69–73.Google Scholar
  64. 64.
    Kockskamper, J., Zima, A. V., and Blatter, L. A. (2005) J. Physiol., 564, 697–714.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Russian Cardiological Research and Production ComplexMoscowRussia

Personalised recommendations