Biochemistry (Moscow)

, Volume 77, Issue 10, pp 1181–1189 | Cite as

Engineering of substrate specificity of D-amino acid oxidase from the yeast Trigonopsis variabilis: Directed mutagenesis of Phe258 residue

  • N. V. Komarova
  • I. V. Golubev
  • S. V. Khoronenkova
  • T. A. Chubar’
  • V. I. TishkovEmail author


Natural D-amino acid oxidases (DAAO) are not suitable for selective determination of D-amino acids due to their broad substrate specificity profiles. Analysis of the 3D-structure of the DAAO enzyme from the yeast Trigonopsis variabilis (TvDAAO) revealed the Phe258 residue located at the surface of the protein globule to be in the entrance to the active site. The Phe258 residue was mutated to Ala, Ser, and Tyr residues. The mutant TvDAAOs with amino acid substitutions Phe258Ala, Phe258Ser, and Phe258Tyr were purified to homogeneity and their thermal stability and substrate specificity were studied. These substitutions resulted in either slight stabilization (Phe258Tyr) or destabilization (Phe258Ser) of the enzyme. The change in half-inactivation periods was less than twofold. However, these substitutions caused dramatic changes in substrate specificity. Increasing the side chain size with the Phe258Tyr substitution decreased the kinetic parameters with all the D-amino acids studied. For the two other substitutions, the substrate specificity profiles narrowed. The catalytic efficiency increased only for D-Tyr, D-Phe, and D-Leu, and for all other D-amino acids this parameter dramatically decreased. The improvement of catalytic efficiency with D-Tyr, D-Phe, and D-Leu for TvDAAO Phe258Ala was 3.66-, 11.7-, and 1.5-fold, and for TvDAAO Phe258Ser it was 1.7-, 4.75-, and 6.61-fold, respectively.

Key words

D-amino acid oxidase site-directed mutagenesis substrate specificity thermal stability 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Maekawa, M., Watanabe, M., Yamaguchi, S., Konno, R., and Hori, Y. (2005) Neurosci. Res., 53, 34–38.PubMedCrossRefGoogle Scholar
  2. 2.
    Chumakov, I., M. Blumenfeld, O., Guerassimenko, L., Cavarec, M., Palicio, M., et al. (2002) Proc. Natl. Acad. Sci. USA, 99, 13675–13680.PubMedCrossRefGoogle Scholar
  3. 3.
    Harrison, P. J., and Owen, M. J. (2003) Lancet, 361, 417–419.PubMedCrossRefGoogle Scholar
  4. 4.
    Takigawa, Y., Homma, H., Lee, J. A., Fukushima, T., Santa, T., Iwatsubo, T., and Imai, K. (1998) Biochem. Biophys. Res. Commun., 248, 641–647.PubMedCrossRefGoogle Scholar
  5. 5.
    D’Aniello, G., Tolino, A., D’Aniello, A., Errico, F., Fisher, G. H., and Di Fiore, M. M. (2000) Endocrinology, 141, 3862–3870.PubMedCrossRefGoogle Scholar
  6. 6.
    D’Aniello, A., Di, C. A., Di, C. C., Annunziato, L., Petrucelli, L., and Fisher, G. (1996) Life Sci., 59, 97–104.PubMedCrossRefGoogle Scholar
  7. 7.
    D’Aniello, A., Di Fiore, M. M., Fisher, G. H., Milone, A., Seleni, A., D’Aniello, S., Perna, A. F., and Ingrosso, D. (2000) FASEB J., 14, 699–714.PubMedGoogle Scholar
  8. 8.
    Fisher, G. H., D’Aniello, A., Vetere, A., Padula, L., Cusano, G. P., and Man, E. H. (1991) Brain Res. Bull., 26, 983–985.PubMedCrossRefGoogle Scholar
  9. 9.
    Fisher, G., Lorenzo, N., Abe, H., Fujita, E., Frey, W. H., Emory, C., Di Fiore, M. M., and D’Aniello, A. (1998) Amino Acids, 15, 263–269.PubMedCrossRefGoogle Scholar
  10. 10.
    Sacchi, S., Rosini, E., Caldinelli, L., and Pollegioni, L. (2012) Methods Mol. Biol., 794, 313–324.PubMedCrossRefGoogle Scholar
  11. 11.
    Hamase, K., Konno, R., Morikawa, A., and Zaitsu, K. (2005) Biol. Pharm. Bull., 28, 1578–1584.PubMedCrossRefGoogle Scholar
  12. 12.
    Pernot, P., Mothet, J. P., Schuvailo, O., Soldatkin, A., Pollegioni, L., Pilone, M., Adeline, M. T., Cespuglio, R., and Marinesco, S. (2008) Anal. Chem., 80, 1589–1597.PubMedCrossRefGoogle Scholar
  13. 13.
    Tishkov, V. I., and Khoronenkova, S. V. (2005) Biochemistry (Moscow), 70, 40–54.Google Scholar
  14. 14.
    Savin, S. S., Chernyshev, I. V., Tishkov, V. I., and Khoronenkova, S. V. (2006) Mosc. Univ. Chem. Bull., 47, 25–30.Google Scholar
  15. 15.
    Khoronenkova, S. V. (2008) Recombinant D-Amino Acid Oxidase: Isolation and Structure-Activity Studies: Candidate’s dissertation [in Russian], Lomonosov Moscow State University, Moscow.Google Scholar
  16. 16.
    Tishkov, V. I., Khornenkova, S. V., and Savina, L. I. RF Patent No. RU 2,362,806 from 23.07.2007; Byull. Izobret. Poleznye Modeli (2009) No. 21.Google Scholar
  17. 17.
    Khoronenkova, S. V., and Tishkov, V. I. (2008) Chin. J. Biotechnol., 24, 2122–2124.Google Scholar
  18. 18.
    Cherskova, N. V., Choronenkova, S. V., and Tishkov, V. I. (2010) Russ. Chem. Bull. Int. Ed., 59, 269–275.CrossRefGoogle Scholar
  19. 19.
    Komarova, N. V., Golubev, I. V., Choronenkova, S. V., and Tishkov, V. I. (2012) Russ. Chem. Bull. Int. Ed., 61, No. 7.Google Scholar
  20. 20.
    Khoronenkova, S. V., and Tishkov, V. I. (2008) Anal. Biochem., 374, 405–410.PubMedCrossRefGoogle Scholar
  21. 21.
    Chukhrai, E. S. (1981) Mosc. Univ. Chem. Bull., 22, 331–340.Google Scholar
  22. 22.
    Umhau, S., Pollegioni, L., Molla, G., Diederichs, K., Welte, W., Pilone, M. S., and Ghisla, S. (2000) Proc. Natl. Acad. Sci. USA, 97, 12463–12468.PubMedCrossRefGoogle Scholar
  23. 23.
    Boselli, A., Sacchi, S., Job, V., Pilone, M. S., and Pollegioni, L. (2002) Eur. J. Biochem., 269, 4762–4771.PubMedCrossRefGoogle Scholar
  24. 24.
    Frattini, L., Rosini, E., Pollegioni, L., and Pilone, M. S. (2011) J. Chromatogr. B, 879, 3235–3239.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • N. V. Komarova
    • 1
    • 2
  • I. V. Golubev
    • 1
    • 3
  • S. V. Khoronenkova
    • 1
    • 3
  • T. A. Chubar’
    • 1
    • 2
    • 3
  • V. I. Tishkov
    • 1
    • 2
    • 3
    Email author
  1. 1.Innovations and High Technologies MSU Ltd.MoscowRussia
  2. 2.Bach Institute of BiochemistryRussian Academy of SciencesMoscowRussia
  3. 3.Chemistry FacultyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations