Biochemistry (Moscow)

, Volume 77, Issue 10, pp 1139–1146 | Cite as

Creation of catalytic antibodies metabolizing organophosphate compounds

  • I. N. Kurkova
  • I. V. Smirnov
  • A. A. BelogurovJr.
  • N. A. Ponomarenko
  • A. G. GabibovEmail author


Development of new ways of creating catalytic antibodies possessing defined substrate specificity towards artificial substrates has important fundamental and practical aspects. Low immunogenicity combined with high stability of immunoglobulins in the blood stream makes abzymes potent remedies. A good example is the cocaine-hydrolyzing antibody that has successfully passed clinical trials. Creation of an effective antidote against organophosphate compounds, which are very toxic substances, is a very realistic goal. The most promising antidotes are based on cholinesterases. These antidotes are now expensive, and their production methods are inefficient. Recombinant antibodies are widely applied in clinics and have some advantage compared to enzymatic drugs. A new potential abzyme antidote will combine effective catalysis comparable to enzymes with high stability and the ability to switch on effector mechanisms specific for antibodies. Examples of abzymes metabolizing organophosphate substrates are discussed in this review.

Key words

catalytic antibodies abzymes organophosphate compounds biocatalysis 



catalytic antibody






organophosphorus toxins


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Greenfield, R. A., Brown, B. R., Hutchins, J. B., Iandolo, J. J., Jackson, R., Slater, L. N., and Bronze, M. S. (2002) Am. J. Med. Sci., 323, 326–340.PubMedCrossRefGoogle Scholar
  2. 2.
    Macilwain, C. (1993) Nature, 363, 3.PubMedGoogle Scholar
  3. 3.
    Tu, A. T. (1996) J. Mass. Spectrom. Soc. Jpn., 44, 293–320.CrossRefGoogle Scholar
  4. 4.
    Lenz, D. E., Yeung, D., Smith, J. R., Sweeney, R. E., Lumley, L. A., and Cerasoli, D. M. (2007) Toxicology, 233, 31–39.PubMedCrossRefGoogle Scholar
  5. 5.
    Kwong, T. C. (2002) Ther. Drug Monit., 24, 144–149.PubMedCrossRefGoogle Scholar
  6. 6.
    Eddleston, M., Buckley, N. A., Eyer, P., and Dawson, A. H. (2008) Lancet, 371, 597–607.PubMedCrossRefGoogle Scholar
  7. 7.
    Wadia, R. S. (2003) J. Crit. Care Med., 7, 85–87.Google Scholar
  8. 8.
    Eyer, P., Eddleston, M., Thiermann, H., Worek, F., and Buckley, N. A. (2008) Br. J. Clin. Pharmacol., 66, 451–452.PubMedCrossRefGoogle Scholar
  9. 9.
    Masson, P., and Rochu, D. (2009) Acta Natura, 1, 68–78.Google Scholar
  10. 10.
    Hilvert, D. (2000) Annu. Rev. Biochem., 69, 751–793.PubMedCrossRefGoogle Scholar
  11. 11.
    Stewart, J. D., and Benkovic, S. J. (1995) Nature, 375, 388–391.PubMedCrossRefGoogle Scholar
  12. 12.
    Deyev, S. M., and Lebedenko, E. N. (2009) Acta Natura, 1, 32–50.Google Scholar
  13. 13.
    Reshetnyak, A. V., Armentano, M. F., Ponomarenko, N. A., Vizzuso, D., Durova, O. M., Ziganshin, R., Serebryakova, M., Govorun, V., Gololobov, G., Morse, H. C., 3rd, Friboulet, A., Makker, S. P., Gabibov, A. G., and Tramontano, A. (2007) J. Am. Chem. Soc., 129, 16175–16182.PubMedCrossRefGoogle Scholar
  14. 14.
    Pollack, S. J., Jacobs, J. W., and Schultz, P. G. (1986) Science, 234, 1570–1573.PubMedCrossRefGoogle Scholar
  15. 15.
    Tawfik, D. S., Lindner, A. B., Chap, R., Eshhar, Z., and Green, B. S. (1997) Eur. J. Biochem., 244, 619–626.PubMedCrossRefGoogle Scholar
  16. 16.
    Suzuki, H., Mukouyama, E. B., Wada, C., Kawamura-Konishi, Y., Wada, Y., and Ono, M. (1998) J. Protein Chem., 17, 273–278.PubMedCrossRefGoogle Scholar
  17. 17.
    Janda, K. D., Schloeder, D., Benkovic, S. J., and Lerner, R. A. (1988) Science, 241, 1188–1191.PubMedCrossRefGoogle Scholar
  18. 18.
    Smirnov, I., Carletti, E., Kurkova, I., Nachon, F., Nicolet, Y., Mitkevich, V. A., Debat, H., Avalle, B., Belogurov, A. A., Jr., Kuznetsov, N., Reshetnyak, A., Masson, P., Tonevitsky, A. G., Ponomarenko, N., Makarov, A. A., Friboulet, A., Tramontano, A., and Gabibov, A. (2011) Proc. Natl. Acad. Sci. USA, 108, 15954–15959.PubMedCrossRefGoogle Scholar
  19. 19.
    Jenks, W. P. (1969) Catalysis in Chemistry and Enzymology, McGraw-Hill, New York.Google Scholar
  20. 20.
    Shokat, K. M., and Schultz, P. G. (1990) Annu. Rev. Immunol., 8, 335–363.PubMedCrossRefGoogle Scholar
  21. 21.
    Weiner, D., Wiemann, T., Wolfe, M., Wentworth, P., Jr., and Janda, K. (1997) J. Am. Chem. Soc., 119, 4088–4089.CrossRefGoogle Scholar
  22. 22.
    Wentworth, P., Jr., Liu, Y., Wentworth, A. D., Fan, P., Foley, M. J., and Janda, K. D. (1998) Proc. Natl. Acad. Sci. USA, 95, 5971–5975.PubMedCrossRefGoogle Scholar
  23. 23.
    Gao, C., Lavey, B. J., Lo, C. H., Datta, A., Wentworth, P., Jr., and Janda, K. D. (1998) J. Am. Chem. Soc., 120, 2211–2217.CrossRefGoogle Scholar
  24. 24.
    Vayron, P., Renard, P. Y., Taran, F., Creminon, C., Frobert, Y., Grassi, J., and Mioskowski, C. (2000) Proc. Natl. Acad. Sci. USA, 97, 7058–7063.PubMedCrossRefGoogle Scholar
  25. 25.
    Baca, M., Scanlan, T. S., Stephenson, R. C., and Wells, J. A. (1997) Proc. Natl. Acad. Sci. USA, 94, 10063–10068.PubMedCrossRefGoogle Scholar
  26. 26.
    Takahashi, N., Kakinuma, H., Liu, L., Nishi, Y., and Fujii, I. (2001) Nat. Biotechnol., 19, 563–567.PubMedCrossRefGoogle Scholar
  27. 27.
    Lerner, R. A., and Barbas, C. F., 3rd. (1996) Acta Chem. Scand., 50, 672–678.PubMedCrossRefGoogle Scholar
  28. 28.
    Durova, O. M., Vorobiev, I. I., Smirnov, I. V., Reshetnyak, A. V., Telegin, G. B., Shamborant, O. G., Orlova, N. A., Genkin, D. D., Bacon, A., Ponomarenko, N. A., Friboulet, A., and Gabibov, A. G. (2009) Mol. Immunol., 47, 87–95.PubMedCrossRefGoogle Scholar
  29. 29.
    Hoess, R. H. (2001) Chem. Rev., 101, 3205–3218.PubMedCrossRefGoogle Scholar
  30. 30.
    Smith, G. P., and Petrenko, V. A. (1997) Chem. Rev., 97, 391–410.PubMedCrossRefGoogle Scholar
  31. 31.
    Winter, G., Griffiths, A. D., Hawkins, R. E., and Hoogenboom, H. R. (1994) Annu. Rev. Immunol., 12, 433–455.PubMedCrossRefGoogle Scholar
  32. 32.
    Fernandez-Gacio, A., Uguen, M., and Fastrez, J. (2003) Trends Biotechnol., 21, 408–414.PubMedCrossRefGoogle Scholar
  33. 33.
    Soumillion, P., Jespers, L., Bouchet, M., Marchand-Brynaert, J., Sartiaux, P., and Fastrez, J. (1994) Appl. Biochem. Biotechnol., 47, 175–189; discussion 189–190.PubMedCrossRefGoogle Scholar
  34. 34.
    Legendre, D., Laraki, N., Graslund, T., Bjornvad, M. E., Bouchet, M., Nygren, P. A., Borchert, T. V., and Fastrez, J. (2000) J. Mol. Biol., 296, 87–102.PubMedCrossRefGoogle Scholar
  35. 35.
    Paul, S., Tramontano, A., Gololobov, G., Zhou, Y. X., Taguchi, H., Karle, S., Nishiyama, Y., Planque, S., and George, S. (2001) J. Biol. Chem., 276, 28314–28320.PubMedCrossRefGoogle Scholar
  36. 36.
    Izadyar, L., Friboulet, A., Remy, M. H., Roseto, A., and Thomas, D. (1993) Proc. Natl. Acad. Sci. USA, 90, 8876–8880.PubMedCrossRefGoogle Scholar
  37. 37.
    Kolesnikov, A. V., Kozyr, A. V., Alexandrova, E. S., Koralewski, F., Demin, A. V., Titov, M. I., Avalle, B., Tramontano, A., Paul, S., Thomas, D., Gabibov, A. G., and Friboulet, A. (2000) Proc. Natl. Acad. Sci. USA, 97, 13526–13531.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • I. N. Kurkova
    • 1
  • I. V. Smirnov
    • 1
  • A. A. BelogurovJr.
    • 1
  • N. A. Ponomarenko
    • 1
  • A. G. Gabibov
    • 1
    Email author
  1. 1.Shemyakin and Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations