Advertisement

Biochemistry (Moscow)

, Volume 77, Issue 10, pp 1129–1138 | Cite as

Octaheme nitrite reductases: Structure and properties

  • T. V. TikhonovaEmail author
  • A. A. Trofimov
  • V. O. PopovEmail author
Review

Abstract

Octaheme oxidoreductases are widespread among various bacterial taxa involved in the biogeochemical nitrogen cycle. The evolution of octaheme oxidoreductases of the nitrogen cycle from the evolutionarily more ancient pentaheme nitrite reductases was accompanied by changes in function from reduction of nitrogen oxides to their oxidation under changing environmental conditions. Octaheme nitrite reductases, which are the subject of the present review, are of a transitional form that combines structural and functional characteristics of pentaheme reductases and octaheme oxidases and possesses a number of unique features typical of only this family of enzymes. The review summarizes data on structure-function investigations of the family of octaheme nitrite reductases. Emphasis is given to comparison of the structures and functions of octaheme nitrite reductases and other multiheme oxidoreductases of the nitrogen cycle.

Key words

multiheme cytochrome c octaheme nitrite reductase structure properties evolution 

Abbreviations

HAO

octaheme hydroxylamine oxidoreductase

MCC

multiheme cytochrome c

NrfA

pentaheme cytochrome c nitrite reductase encoded by the nrfA gene (nitrite reduction with formate)

ONR

octaheme nitrite reductase

OTR

octaheme tetrathionate reductase

rmsd

root mean square deviation

TvNiR

octaheme nitrite reductase from Thioalkalivibrio nitratireducens

TvPaR

octaheme nitrite reductase from Thioalkalivibrio paradoxus

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10541_2012_9660_MOESM1_ESM.pdf (468 kb)
Supplementary material, approximately 301 KB.

References

  1. 1.
    Simon, J., Kern, M., Hermann, B., Einsle, O., and Butt, J. N. (2011) Biochem. Soc. Trans., 39, 1864–1870.PubMedCrossRefGoogle Scholar
  2. 2.
    Simon, J. (2002) FEMS Microbiol. Rev., 26, 285–309.PubMedCrossRefGoogle Scholar
  3. 3.
    Kajie, S., and Anraku, Y. (1986) Eur. J. Biochem., 154, 457–463.PubMedCrossRefGoogle Scholar
  4. 4.
    Almeida, M. G., Macieira, S., Goncalves, L. L., Huber, R., Cunha, C. A., Romao, M. J., Costa, C., Lampreia, J., Moura, J. J. G., and Moura, I. (2003) Eur. J. Biochem., 270, 3904–3915.PubMedCrossRefGoogle Scholar
  5. 5.
    Pereira, I. A. C., LeGall, J., Xavier, A. V., and Teixeira, M. (2000) Biochim. Biophys. Acta, 1481, 119–130.PubMedCrossRefGoogle Scholar
  6. 6.
    Stach, P., Einsle, O., Schumacher, W., Kurun, E., and Kroneck, P. M. H. (2000) J. Inorg. Biochem., 79, 381–385.PubMedCrossRefGoogle Scholar
  7. 7.
    Rudolf, M., Einsle, O., Neese, F., and Kroneck, P. M. H. (2002) Biochem. Soc. Trans., 30, 649–653.PubMedCrossRefGoogle Scholar
  8. 8.
    Angove, H. C., Cole, J. A., Richardson, D. J., and Butt, J. N. (2002) J. Biol. Chem., 277, 23374–23381.PubMedCrossRefGoogle Scholar
  9. 9.
    Clarke, T. A., Hemmings, A. M., Burlat, B., Butt, J. N., Cole, J. A., and Richardson, D. J. (2006) Biochem. Soc. Trans., 34, 143–145.PubMedCrossRefGoogle Scholar
  10. 10.
    Van Wonderen, J. H., Burlat, B., Richardson, D. J., Cheesman, M. R., and Butt, J. N. (2008) J. Biol. Chem., 283, 9587–9594.PubMedCrossRefGoogle Scholar
  11. 11.
    Poock, S. R., Leach, E. R., Moir, J. W. B., Cole, J. A., and Richardson, D. J. (2002) J. Biol. Chem., 277, 23664–23669.PubMedCrossRefGoogle Scholar
  12. 12.
    Liu, M.-C., and Peck, H. D., Jr. (1981) J. Biol. Chem., 256, 13159–13164.PubMedGoogle Scholar
  13. 13.
    Pereira, I. C., Abreu, I. A., Xavier, A. V., LeGall, J., and Teixeira, M. (1996) Biochem. Biophys. Res. Commun., 224, 611–618.PubMedCrossRefGoogle Scholar
  14. 14.
    Lukat, P., Rudolf, M., Stach, P., Messerschmidt, A., Kroneck, P. M. H., Simon, J., and Einsle, O. (2008) Biochemistry, 47, 2080–2086.PubMedCrossRefGoogle Scholar
  15. 15.
    Kemp, G. L., Clarke, T. A., Marritt, S. J., Lockwood, C., Poock, S. R., Hemmings, A. M., Richardson, D. J., Cheesman, M. R., and Butt, J. N. (2010) Biochem. J., 431, 73–80.PubMedCrossRefGoogle Scholar
  16. 16.
    Kern, M., Volz, J., and Simon, J. (2011) Environ. Microbiol., 13, 2478–2494.PubMedCrossRefGoogle Scholar
  17. 17.
    Einsle, O., Messerschmidt, A., Stach, P., Bourenkov, G. P., Bartunik, H. D., Huber, R., and Kroneck, P. M. (1999) Nature, 400, 476–480.PubMedCrossRefGoogle Scholar
  18. 18.
    Einsle, O., Stach, P., Messerschmidt, A., Simon, J., Kroger, A., Huber, R., and Kroneck, P. M. (2000) J. Biol. Chem., 275, 39608–39616.PubMedCrossRefGoogle Scholar
  19. 19.
    Bamford, V. A., Angove, H. C., Seward, H. E., Thomson, A. J., Cole, J. A., Butt, J. N., Hemmings, A. M., and Richardson, D. J. (2002) Biochemistry, 41, 2921–2931.PubMedCrossRefGoogle Scholar
  20. 20.
    Cunha, C. A., Macieira, S., Dias, J. M., Almeida, G., Goncalves, L. L., Costa, C., Lampreia, J., Huber, R., Moura, J. J., Moura, I., and Romao, M. J. (2003) J. Biol. Chem., 278, 17455–17465.PubMedCrossRefGoogle Scholar
  21. 21.
    Rodrigues, M. L., Oliveira, T. F., Pereira, I. A., and Archer, M. (2006) EMBO J., 25, 5951–5960.PubMedCrossRefGoogle Scholar
  22. 22.
    Lockwood, C. W. J., Clarke, T. A., Butt, J. N., Hemmings, A. M., and Richardson, D. J. (2011) Biochem. Soc. Trans., 39, 1871–1875.PubMedCrossRefGoogle Scholar
  23. 23.
    Einsle, O., Messerschmidt, A., Huber, R., Kroneck, P. M. H., and Neese, F. (2002) J. Am. Chem. Soc., 124, 11737–11745.PubMedCrossRefGoogle Scholar
  24. 24.
    Moser, C. C., Anderson, J. L., and Dutton, P. L. (2010) Biochim. Biophys. Acta, 1797, 1573–1586.PubMedCrossRefGoogle Scholar
  25. 25.
    Fonseca, B. M., Paquete, C. M., Salgueiro, C. A., and Louro, R. O. (2012) FEBS Lett., 586, 504–509.PubMedCrossRefGoogle Scholar
  26. 26.
    Lockwood, C., Butt, J. N., Clarke, T. A., and Richardson, D. J. (2011) Biochem. Soc. Trans., 39, 263–268.PubMedCrossRefGoogle Scholar
  27. 27.
    Mowat, C. G., and Chapman, S. K. (2005) Dalton Trans., 3381–3389.Google Scholar
  28. 28.
    Igarashi, N., Moriyama, H., Fujiwara, T., Fukumori, Y., and Tanaka, N. (1997) Nat. Struct. Biol., 4, 276–284.PubMedCrossRefGoogle Scholar
  29. 29.
    Mowat, C. G., Rothery, E., Miles, C. S., McIver, L., Doherty, M. K., Drewette, K., Taylor, P., Walkinshaw, M. D., Chapman, S. K., and Reid, G. A. (2004) Nat. Struct. Mol. Biol., 11, 1023–1024.PubMedCrossRefGoogle Scholar
  30. 30.
    Atkinson, S. J., Mowat, C. G., Reid, G. A., and Chapman, S. K. (2007) FEBS Lett., 581, 3805–3808.PubMedCrossRefGoogle Scholar
  31. 31.
    Klotz, M. G., Schmid, M. C., Strous, M., Op den Camp, H. J. M., Jetten, M. S. M., and Hooper, A. B. (2008) Environ. Microbiol., 10, 3150–3163.PubMedCrossRefGoogle Scholar
  32. 32.
    Bergmann, D. J., Hooper, A. B., and Klotz, M. G. (2005) Appl. Environ. Microbiol., 71, 5371–5382.PubMedCrossRefGoogle Scholar
  33. 33.
    Tikhonova, T., Tikhonov, A., Trofimov, A., Polyakov, K., Boyko, K., Cherkashin, E., Rakitina, T., Sorokin, D., and Popov, V. (2012) FEBS J., in press.Google Scholar
  34. 34.
    Tikhonova, T. V., Slutsky, A., Antipov, A. N., Boyko, K. M., Polyakov, K. M., Sorokin, D. Y., Zvyagilskaya, R. A., and Popov, V. O. (2006) Biochim. Biophys. Acta, 1764, 715–723.PubMedCrossRefGoogle Scholar
  35. 35.
    Polyakov, K. M., Boyko, K. M., Tikhonova, T. V., Slutsky, A., Antipov, A. N., Zvyagilskaya, R. A., Popov, A. N., Bourenkov, G. P., Lamzin, V. S., and Popov, V. O. (2009) J. Mol. Biol., 389, 846–862.PubMedCrossRefGoogle Scholar
  36. 36.
    Foti, M., Ma, S., Sorokin, D. Y., Rademaker, J. L. W., Kuenen, J. G., and Muyzer, G. (2006) FEMS Microbiol. Ecol., 56, 95–101.PubMedCrossRefGoogle Scholar
  37. 37.
    Sorokin, D. Yu., Tourova, T. P., Lysenko, A. M., Mityushina, L. L., and Kuenen, J. G. (2002) Int. J. Syst. Evol. Microbiol., 52, 657–664.PubMedGoogle Scholar
  38. 38.
    Sorokin, D. Yu., Tourova, T. P., Sjollema, K. A., and Kuenen, J. G. (2003) Int. J. Syst. Evol. Microbiol., 53, 1779–1783.PubMedCrossRefGoogle Scholar
  39. 39.
    Hendrich, M. P., Upadhyay, A. K., Riga, J., Arciero, D. M., and Hooper, A. B. (2002) Biochemistry, 41, 4603–4611.PubMedCrossRefGoogle Scholar
  40. 40.
    Fernandez, M. L., Estrin, D. A., and Bari, S. E. (2008) J. Inorg. Biochem., 102, 1523–1530.PubMedCrossRefGoogle Scholar
  41. 41.
    Kostera, J., Youngblut, M. D., Slosarczyk, J. M., and Pacheco, A. A. (2008) J. Biol. Inorg. Chem., 13, 1073–1083.PubMedCrossRefGoogle Scholar
  42. 42.
    Kostera, J., McGarry, J., and Pacheco, A. A. (2010) Biochemistry, 49, 8546–8553.PubMedCrossRefGoogle Scholar
  43. 43.
    Trofimov, A. A., Polyakov, K. M., Boyko, K. M., Tikhonova, T. V., Safonova, T. N., Tikhonov, A. V., Popov, A. N., and Popov, V. O. (2010) Acta Crystallogr. D Biol. Crystallogr., 66, 1043–1047.PubMedCrossRefGoogle Scholar
  44. 44.
    Tikhonova, T. V., Slutskaya, E. S., Filimonenkov, A. A., Boyko, K. M., Kleimenov, S. Y., Konarev, P. V., Polyakov, K. M., Svergun, D. I., Trofimov, A. A., Khomenkov, V. G., Zvyagilskaya, R. A., and Popov, V. O. (2008) Biochemistry (Moscow), 73, 164–170.CrossRefGoogle Scholar
  45. 45.
    Trofimov, A. A., Polyakov, K. M., Tikhonova, T. V., Tikhonov, A. V., Safonova, T. N., Boyko, K. M., Dorovatovsky, P. V., and Popov, V. O. (2012) Acta Crystallogr. D Biol. Crystallogr., 68, 144–153.PubMedCrossRefGoogle Scholar
  46. 46.
    Clarke, T. A., Kemp, G. L., van Wonderen, J. H., Doyle, R. M., Cole, J. A., Tovell, N., Cheesman, M. R., Butt, J. N., Richardson, D. J., and Hemmings, A. M. (2008) Biochemistry, 47, 3789–3799.PubMedCrossRefGoogle Scholar
  47. 47.
    Trofimov, A. A., Polyakov, K. M., Boyko, K. M., Filimonenkov, A. A., Dorovatovskii, P. V., Tikhonova, T. V., Popov, V. O., and Kovalchuk, M. V. (2010) Crystallogr. Rep., 55, 58–64.CrossRefGoogle Scholar
  48. 48.
    Sorokin, D. Y., Antipov, A. N., and Kuenen, J. G. (2003) Arch. Microbiol., 180, 127–133.PubMedCrossRefGoogle Scholar
  49. 49.
    Clarke, T. A., Cole, J. A., Richardson, D. J., and Hemmings, A. M. (2007) Biochem. J., 406, 19–30.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Bach Institute of BiochemistryRussian Academy of SciencesMoscowRussia
  2. 2.Engelhardt Institute of Molecular BiologyRussian Academy of SciencesMoscowRussia
  3. 3.Russian National Research Center “Kurchatov Institute”MoscowRussia

Personalised recommendations