Biochemistry (Moscow)

, Volume 77, Issue 10, pp 1083–1096 | Cite as

Reflections on biocatalysis involving phosphorus

  • G. M. Blackburn
  • M. W. Bowler
  • Yi Jin
  • J. P. Waltho
Review

Abstract

Early studies on chemical synthesis of biological molecules can be seen to progress to preparation and biological evaluation of phosphonates as analogues of biological phosphates, with emphasis on their isosteric and isopolar character. Work with such mimics progressed into structural studies with a range of nucleotide-utilising enzymes. The arrival of metal fluorides as analogues of the phosphoryl group, PO3, for transition state (TS) analysis of enzyme reactions stimulated the symbiotic deployment of 19F NMR and protein crystallography. Characteristics of enzyme transition state analogues are reviewed for a range of reactions. From the available MFx species, trifluoroberyllate gives tetrahedral mimics of ground states (GS) in which phosphate is linked to carboxylate and phosphate oxyanions. Tetrafluoroaluminate is widely employed as a TS mimic, but it necessarily imposes octahedral geometry on the assembled complexes, whereas phosphoryl transfer involves trigonal bipyramidal (tbp) geometry. Trifluoromagnesate (MgF3) provides the near-ideal solution, delivering tbp geometry and correct anionic charge. Some of the forty reported tbp structures assigned as having AlF30 cores have been redefined as trifluoromagnesate complexes. Transition state analogues for a range of kinases, mutases, and phosphatases provide a detailed description of mechanism for phosphoryl group transfer, supporting the concept of charge balance in their TS and of concerted-associative pathways for biocatalysis. Above all, superposition of GS and TS structures reveals that in associative phosphoryl transfer, the phosphorus atom migrates through a triangle of three, near-stationary, equatorial oxygens. The extension of these studies to near attack conformers further illuminates enzyme catalysis of phosphoryl transfer.

Key words

phosphate esters nucleotide analogues α-fluorophosphonates kinases mutases metal fluorides transition state analogues NACs 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10541_2012_9656_MOESM1_ESM.pdf (760 kb)
Supplementary material, approximately 760 KB.

References

  1. 1.
    Blackburn, G. M., Cohen, J. S., and Todd, A. R. (1964) Tetrahedron Lett., 5, 2873–2879.CrossRefGoogle Scholar
  2. 2.
    Blackburn, G. M., Brown, M. J., and Harris, M. R. (1966) J. Chem. Soc. Chem. Commun., 611–612.Google Scholar
  3. 3.
    Blackburn, G. M., Brown, M. J., Harris, M. R., and Shire, D. (1969) J. Chem. Soc. Perkin, 1, 676–683.Google Scholar
  4. 4.
    Smith, J. D., Traut, R. R., Blackburn, G. M., and Monro, R. E. (1965) J. Mol. Biol., 13, 617–628.CrossRefGoogle Scholar
  5. 5.
    Hansen, J. L., Schmeing, T. M., Moore, P. B., and Steitz, T. A. (2002) Proc. Natl. Acad. Sci. USA, 99, 11670–11675.PubMedCrossRefGoogle Scholar
  6. 6.
    Blackburn, G. M., and Brown, M. J. (1969) J. Am. Chem. Soc., 91, 525–526.CrossRefGoogle Scholar
  7. 7.
    Storm, D. R., and Koshland, D. E. (1970) Proc. Natl. Acad. Sci. USA, 66, 445–452.PubMedCrossRefGoogle Scholar
  8. 8.
    Griffin, J. L., Bowler, M. W., Baxter, N. J., Leigh, K. N., Dannatt, H. J. R., Hounslow, A. M., Blackburn, G. M., Webster, C. E., Cliff, M. J., and Waltho, J. P. (2012) Proc. Natl. Acad. Sci. USA, DOI/10.1073/pnas.1116855109.Google Scholar
  9. 9.
    Blackburn, G. M. (1981) Chem. Ind. (London), 5, 134–138.Google Scholar
  10. 10.
    Orr, G. A., and Knowles, J. R. (1974) Biochem. J., 141, 721–723.PubMedGoogle Scholar
  11. 11.
    McAleese, S. M., Jutagir, V., Blackburn, G. M., and Fothergill-Gilmore, L. A. (1987) Biochem. J., 243, 301–304.PubMedGoogle Scholar
  12. 12.
    Richard, V., Dodson, G. G., and Maugen, Y. (1993) J. Mol. Biol., 233, 270–274.PubMedCrossRefGoogle Scholar
  13. 13.
    Larsen, T. M., Benning, M. M., Rayment, I., and Reed, G. H. (1998) Biochemistry, 37, 6247–6255.PubMedCrossRefGoogle Scholar
  14. 14.
    Blackburn, G. M., Kent, D. E., and Kolkmann, F. (1981) J. Chem. Soc. Chem. Commun., 1188–1190.Google Scholar
  15. 15.
    Burton, D. J., and Flynn, R. M. (1979) Synthesis, 615.Google Scholar
  16. 16.
    Romanenko, V. D., and Kukhar, V. P. (2006) Chem. Rev., 106, 3868–3935.PubMedCrossRefGoogle Scholar
  17. 17.
    Blackburn, G. M., and Ingleson, D. (1978) J. Chem. Soc. Chem. Commun., 870–871.Google Scholar
  18. 18.
    McKenna, C. E., and Schmidhauser, J. (1979) J. Chem. Soc. Chem. Commun., 739.Google Scholar
  19. 19.
    D’yakov, V. M., Voronkov, M. G., and Orlov, N. F. (1972) Izvestiya Akad. Nauk SSSR. Ser. Khim., 11, 2484–2488.Google Scholar
  20. 20.
    Blackburn, G. M., and Rashid, A. (1988) J. Chem. Soc. Chem. Commun., 40–41.Google Scholar
  21. 21.
    Blackburn, G. M., and Rashid, A. (1988) J. Chem. Soc. Chem. Commun., 317–319.Google Scholar
  22. 22.
    Berkowitz, D., Pfannenstield, T. J., and Doukov, T. (2000) J. Org. Chem., 65, 4498–4508; Berkowitz, D., and Bose M. (2001) J. Fluorine Chem., 112, 13–33.PubMedCrossRefGoogle Scholar
  23. 23.
    Wu, Y., Zakharova, V. M., Kashemirov, B. A., Goodman, M. F., Batra, V. K., Wilson, S. H., and McKenna, C. E. (2012) J. Am. Chem. Soc., DOI: 10.1021/ja300218x.Google Scholar
  24. 24.
    Bhattasali, D., Forget, S. M., and Jakeman, D. L. (2012) in preparation.Google Scholar
  25. 25.
    Blackburn, G. M., Kent, D. E., and Kolkmann, F. (1984) J. Chem. Soc. Perkin Trans., 1, 1119–1125.CrossRefGoogle Scholar
  26. 26.
    Blackburn, G. M., Eckstein, F., Kent, D. E., and Perree, T. D. (1985) Nucleosides Nucleotides, 4, 165–167.CrossRefGoogle Scholar
  27. 27.
    Bisbal, C., Silhol, M., Lemaitre, M., Bayard, B., Salehzada, T., Lebleu, B., Perree, T. D., and Blackburn, G. M. (1987) Biochemistry, 26, 5172–5178.PubMedCrossRefGoogle Scholar
  28. 28.
    Dixon, R. E., and Lowe, G. (1989) J. Biol. Chem., 264, 2069–2074.PubMedGoogle Scholar
  29. 29.
    McLennan, A. G., Taylor, G. E., Prescott, M., and Blackburn, G. M. (1989) Biochemistry, 28, 3868–3875.PubMedCrossRefGoogle Scholar
  30. 30.
    Sucato, C. A., Upton, T. G., Kashemirov, B. A., Osuna, Oertell, J. K., Beard, W. A., Wilson, S. H., Florian, J., Warshel, A., McKenna, C. E., and Goodman, M. F. (2008) Biochemistry, 47, 870–879.PubMedCrossRefGoogle Scholar
  31. 31.
    Burke, T. R., Jr., Kole, H. K., and Roller, P. P. (1994) Biochem. Biophys. Res. Commun., 204, 129–136.PubMedCrossRefGoogle Scholar
  32. 32.
    Halazy, S., Ehrhard, E., and Danzin, C. J. (1991) J. Am. Chem. Soc., 113, 315–319.CrossRefGoogle Scholar
  33. 33.
    Nieschalk, J., and O’Hagan, D. (1995) J. Chem. Soc. Chem. Commun., 719–720.Google Scholar
  34. 34.
    Chamberlain, B. T., Batra, V. K., Beard, W. A., Kadina, A. P., Shock, D. D., Kashemirov, B. A., McKenna, C. E., Goodman, M. F., and Wilson, S. H. (2012) Chembiochem, 13, 528–530.PubMedCrossRefGoogle Scholar
  35. 35.
    Dalvit, C., and Vulpetti, A. (2011) ChemMedChem, 6, 104–114.PubMedCrossRefGoogle Scholar
  36. 36.
    Srinivasan, S., Mir, F., Huang, J. S., Khasawneh, F. T., Lam, S. C.-T., and Le Breton, G. C. (2009) J. Biol. Chem., 284, 16108–16117.PubMedCrossRefGoogle Scholar
  37. 37.
    Schlauderer, G. J., Proba, K., and Schulz, G. E. (1996) J. Mol. Biol., 256, 223–227.PubMedCrossRefGoogle Scholar
  38. 38.
    Bystrom, C. E., Pettigrew, D. W., Branchaud, B. P., O’Brien, P., and Remington, S. J. (1999) Biochemistry, 38, 3508–3518.PubMedCrossRefGoogle Scholar
  39. 39.
    Bernstein, B. E., Williams, D. M., Bressi, J. C., Kuhn, P., Gelb, M. H., Blackburn, G. M., and Hol, W. G. J. (1998) J. Mol. Biol., 279, 1137–1148.PubMedCrossRefGoogle Scholar
  40. 40.
    Williams, D. M., Jakeman, D. L., Vyle, J. S., Williamson, M. P., and Blackburn, G. M. (1998) Bioorg. Med. Chem. Lett., 8, 2603–2608.PubMedCrossRefGoogle Scholar
  41. 41.
    Blackburn, G. M., Jakeman, D. L., Ivory, A. J., and Willliamson, M. P. (1994) Bioorg. Med. Chem. Lett., 4, 2573–2578.CrossRefGoogle Scholar
  42. 42.
    Caplan, N. A., Pogson, C. I., Hayes, D. J., and Blackburn, G. M. (1998) Bioorg. Med. Chem., 8, 515–520.CrossRefGoogle Scholar
  43. 43.
    Cormanich, R. A., Freitas, M. P., Tormena, C. F., and Rittnera, R. (2012) RSC Advances, DOI: 10.1039/c2ra00039c.Google Scholar
  44. 44.
    Haldane, J. B. S. (1930) Enzymes, Green, London.Google Scholar
  45. 45.
    Pauling, L. (1948) Nature (London), 161, 707–708.CrossRefGoogle Scholar
  46. 46.
    Blackburn, G. M., Datta, A., Denham, H., and Wentworth, P. (1998) Adv. Phys. Org. Chem., 31, 249–392.CrossRefGoogle Scholar
  47. 47.
    Betley, J. R., Cesaro-Tadic, S., Mekhalfia, A., Rickard, J. H., Denham, H., Partridge, L. J., Pluckthun, A., and Blackburn, G. M. (2002) Angew. Chem. Internat. Ed. Engl., 41, 775–777.CrossRefGoogle Scholar
  48. 48.
    Cesaro-Tadic, S., Lagos, D., Honegger, A., Rickard, J. A., Mekhalfia, A., Partridge, L. J., Blackburn, G. M., and Pluckthun, A. (2003) Nature Biotechnol., 21, 679–685.CrossRefGoogle Scholar
  49. 49.
    Lahiri, S. D., Zhang, G., Dunaway-Mariano, D., and Allen, K. N. (2003) Science, 299, 2067–2069.Google Scholar
  50. 50.
    Knowles, J. (2003) Science, 299, 2002–2003.PubMedCrossRefGoogle Scholar
  51. 51.
    Graham, D. L., Lowe, P. N., Grime, G. W., Marsh, M., Rittinger, K., Smerdon, S. J., Gamblin, S. J., and Eccleston, J. F. (2002) Chem. Biol., 9, 375–381.PubMedCrossRefGoogle Scholar
  52. 52.
    Blackburn, G. M., Williams, N. H., Gamblin, S. J., and Smerdon, S. J. (2003) Science, 301, 1184.PubMedCrossRefGoogle Scholar
  53. 53.
    Allen, K. N., and Dunaway-Mariano, D. (2003) Science, 301, 1184; and subsequent publications.CrossRefGoogle Scholar
  54. 54.
    Baxter, N. J., Olguin, L. F., Golicnik, M., Feng, G., Hounslow, A. M., Bermel, W., Blackburn, G. M., Hollfelder, F., Waltho, J. P., and Williams, N. H. (2006) Proc. Natl. Acad. Sci. USA, 103, 14732–14737.PubMedCrossRefGoogle Scholar
  55. 55.
    Baxter, N. J., Blackburn, G. M., Marston, J. P., Hounslow, A. M., Cliff, M. J., Bermel, W., Williams, N. H., Hollfelder, F., Wemmer, D. E., and Waltho, J. P. (2008) J. Am. Chem. Soc., 130, 3952–3958.PubMedCrossRefGoogle Scholar
  56. 56.
    Baxter, N. J., Hounslow, A. M., Bowler, M. W., Williams, N. H., Blackburn, G. M., and Waltho, J. P. (2009) J. Am. Chem. Soc., 131, 16334–16335.PubMedCrossRefGoogle Scholar
  57. 57.
    Cliff, M. J., Bowler, M. W., Varga, A., Marston, J. P., Szabo, J., Hounslow, A. M., Baxter, N. J., Blackburn, G. M., Vas, M., and Waltho, J. P. (2010) J. Am. Chem. Soc., 132, 6507–6516.PubMedCrossRefGoogle Scholar
  58. 58.
    Baxter, N. J., Bowler, M. W., Alizadeh, T., Cliff, M. J., Hounslow, A. M., Wu, B., Berkowitz, D. B., Williams, N. H., Blackburn, G. M., and Waltho, J. P. (2010) Proc. Natl. Acad. Sci. USA, 107, 4555–4560.PubMedCrossRefGoogle Scholar
  59. 59.
    Schlichting, I., and Reinstein, J. (1999) Nat. Struct. Biol., 6, 721–723.PubMedCrossRefGoogle Scholar
  60. 60.
    Wang, W., Cho, H. S., Kim, R., Jancarik, J., Yokota, H., Nguyen, H. H., Grigoriev, I. V., Wemmer, D. E., and Kim, S. H. (2002) J. Mol. Biol., 319, 421–431.PubMedCrossRefGoogle Scholar
  61. 61.
    Bowler, M. W., Cliff, M. J., Waltho, J. P., and Blackburn, G. M. (2010) New J. Chem., 34, 784–794.CrossRefGoogle Scholar
  62. 62.
    Webster, C. E. (2004) J. Am. Chem. Soc., 126, 6840–6841.PubMedCrossRefGoogle Scholar
  63. 63.
    Guthrie, R. D., and Jencks, W. P. (1989) Acc. Chem. Res., 22, 343–349.CrossRefGoogle Scholar
  64. 64.
    Bowler, M. E., unpublished results.Google Scholar
  65. 65.
    Madhusudan, A. P., Xuong, N. H., and Taylor, S. S. (2002) Nat. Struc. Biol., 9, 273–277.CrossRefGoogle Scholar
  66. 66.
    Brandao, T. A. S., Hengge, A. C., and Johnson, S. J. (2010) J. Biol. Chem., 285, 15874–15883.PubMedCrossRefGoogle Scholar
  67. 67.
    Stockbridge, R. B., and Wolfenden, R. (2009) J. Biol. Chem., 284, 22747–22757.PubMedCrossRefGoogle Scholar
  68. 68.
    Thoden, J. B., and Holden, H. M. (2005) J. Biol. Chem., 280, 32784–32791.PubMedCrossRefGoogle Scholar
  69. 69.
    Westheimer, F. H. (1970) Acc. Chem. Res., 1, 70–78.CrossRefGoogle Scholar
  70. 70.
    Liu, S., Lu, Z., Jia, J., Dunaway-Mariano, D., and Herzberg, O. (2002) Biochemistry, 41, 10270–10276.PubMedCrossRefGoogle Scholar
  71. 71.
    Hengge, A. C. (2005) Adv. Phys. Org. Chem., 40, 49–108.CrossRefGoogle Scholar
  72. 72.
    Westheimer, F. H. (1981) Chem. Rev., 81, 313–326.CrossRefGoogle Scholar
  73. 73.
    Davies, J. E., Kirby, A. J., and Roussev, C. D. (2001) Acta Crystallogr., E57, o994.Google Scholar
  74. 74.
    Lassila, J. K., Zalatan, J. G., and Herschlag, D. (2011) Annu. Rev. Biochem., 80, 669–702.PubMedCrossRefGoogle Scholar
  75. 75.
    Houk, K. N., Gustafson, S. M., and Black, K. A. (1992) J. Am. Chem. Soc., 114, 8565–8572.CrossRefGoogle Scholar
  76. 76.
    Zalatan, J. G., Catrina, I., Mitchell, R., Grzyska, P. K., O’Brien, P. J., Herschlag, D., and Hengge, A. C. (2007) J. Am. Chem. Soc., 129, 9879–9898.CrossRefGoogle Scholar
  77. 77.
    Pauling, L. (1947) J. Amer. Chem. Soc., 69, 542–553.CrossRefGoogle Scholar
  78. 78.
    Bowler, M. J. (2012) unpublished results.Google Scholar
  79. 79.
    Calderone, V., Forleo, C., Benvenuti, M., Rossolini, G. M., Thaller, M. C., Mangani, S., to be published (PDB: 1RMY).Google Scholar
  80. 80.
    Wang, H., Falck, J. R., Hall, T. M., and Shears, S. B. (2011) Nat. Chem. Biol., 8, 111–116.PubMedCrossRefGoogle Scholar
  81. 81.
    Bruice, T. C. (1976) Annu. Rev. Biochem., 45, 331–373.PubMedCrossRefGoogle Scholar
  82. 82.
    Hur, S., and Bruice, T. C. (2003) Proc. Natl. Acad. Sci. USA, 100, 12015–12020.PubMedCrossRefGoogle Scholar
  83. 83.
    Lad, C., Williams, N. H., and Wolfenden, R. (2003) Proc. Natl. Acad. Sci. USA, 100, 5607–5610.PubMedCrossRefGoogle Scholar
  84. 84.
    Schroeder, G. K., Lad, C., Wyman, P., Williams, N. H., and Wolfenden, R. (2006) Proc. Natl. Acad. Sci. USA, 103, 4052–4055.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • G. M. Blackburn
    • 1
  • M. W. Bowler
    • 2
  • Yi Jin
    • 1
  • J. P. Waltho
    • 1
    • 3
  1. 1.Krebs Institute, Department of Molecular Biology and BiotechnologyUniversity of SheffieldSheffieldUK
  2. 2.Synchrotron Science GroupEuropean Molecular Biology LaboratoryGrenoble Cedex 9France
  3. 3.Manchester Interdisciplinary BiocentreManchesterUK

Personalised recommendations