Biochemistry (Moscow)

, Volume 77, Issue 9, pp 983–995 | Cite as

Novel mitochondria-targeted compounds composed of natural constituents: Conjugates of plant alkaloids berberine and palmatine with plastoquinone

  • B. V. Chernyak
  • Y. N. Antonenko
  • E. R. Galimov
  • L. V. Domnina
  • V. B. Dugina
  • R. A. Zvyagilskaya
  • O. Yu. Ivanova
  • D. S. Izyumov
  • K. G. Lyamzaev
  • A. V. Pustovidko
  • T. I. Rokitskaya
  • A. G. Rogov
  • I. I. Severina
  • R. A. Simonyan
  • M. V. Skulachev
  • V. N. Tashlitsky
  • E. V. Titova
  • T. A. Trendeleva
  • G. S. Shagieva
Review

Abstract

Novel mitochondria-targeted compounds composed entirely of natural constituents have been synthesized and tested in model lipid membranes, in isolated mitochondria, and in living human cells in culture. Berberine and palmatine, penetrating cations of plant origin, were conjugated by nonyloxycarbonylmethyl residue with the plant electron carrier and antioxidant plastoquinone. These conjugates (SkQBerb, SkQPalm) and their analogs lacking the plastoquinol moiety (C10Berb and C10Palm) penetrated across planar bilayer phospholipid membrane in their cationic forms and accumulated in isolated mitochondria or in mitochondria in living human cells in culture. Reduced forms of SkQBerb and SkQPalm inhibited lipid peroxidation in isolated mitochondria at nanomolar concentrations. In isolated mitochondria and in living cells, the berberine and palmatine moieties were not reduced, so antioxidant activity belonged exclusively to the plastoquinol moiety. In human fibroblasts, nanomolar SkQBerb and SkQPalm prevented fragmentation of mitochondria and apoptosis induced by exogenous hydrogen peroxide. At higher concentrations, conjugates of berberine and palmatine induced proton transport mediated by free fatty acids both in model and in mitochondrial membrane. In mitochondria this process was facilitated by the adenine nucleotide carrier. As an example of application of the novel mitochondria-targeted antioxidants SkQBerb and SkQPalm to studies of signal transduction, we discuss induction of cell cycle arrest, differentiation, and morphological normalization of some tumor cells. We suggest that production of oxygen radicals in mitochondria is necessary for growth factors-MAP-kinase signaling, which supports proliferation and transformed phenotype.

Key words

mitochondria-targeted antioxidants SkQ berberine palmatine phospholipid membranes mitochondria tumor cells 

Abbreviations

ANT

adenine nucleotide translocase

AMVN

2,2′-azodi(2,4′-dimethylvaleronitrile)

BLM

bilayer phospholipid membrane

C10Berb

13-(decyloxycarbonylmethyl)berberine

CM-DCF-DA

5-(-6)-chloromethyl-2′,7′-dichlorodihydrofluorescein diacetate

C10Palm

13-(decyloxycarbonylmethyl)palmatine

C12TPP

dodecyltriphenylphosphonium

FA

fatty acid

FCCP

trifluoromethoxycarbonylcyanide phenylhydrazone

ROS

reactive oxygen species

SkQ1

10-(6′-plastoquinonyl)decyltriphen-ylphosphonium

SkQBerb

13-[9-(6′-plastoquinonyl)nonyloxycarbonylmethyl]berberine

SkQPalm

13-[9-(6′-plastoquinonyl)nonyloxycarbonylmethyl]palmatine

SkQR1

10-(6′-plastoquinonyl)decylrhodamine 19

TPP+

triphenylphosphonium

ΔΨ

transmembrane electric potential difference

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mitchell, P. (1961) Nature, 191, 144–148.PubMedCrossRefGoogle Scholar
  2. 2.
    Liberman, E. A., Topaly, V. P., Tsofina, L. M., Jasaitis, A. A., and Skulachev, V. P. (1969) Nature, 222, 1076–1078.PubMedCrossRefGoogle Scholar
  3. 3.
    Yousif, L. F., Stewart, K. M., and Kelley, S. O. (2009) Chembiochem: Eur. J. Chem. Biol., 10, 1939–1950.CrossRefGoogle Scholar
  4. 4.
    Skulachev, M. V., Antonenko, Y. N., Anisimov, V. N., Chernyak, B. V., Cherepanov, D. A., Chistyakov, V. A., Egorov, M. V., Kolosova, N. G., Korshunova, G. A., Lyamzaev, K. G., Plotnikov, E. Y., Roginsky, V. A., Savchenko, A. Y., Severina, I. I., Severin, F. F., Shkurat, T. P., Tashlitsky, V. N., Shidlovsky, K. M., Vyssokikh, M. Y., Zamyatnin, A. A., Jr., Zorov, D. B., and Skulachev, V. P. (2011) Curr. Drug Targets, 12, 800–826.PubMedCrossRefGoogle Scholar
  5. 5.
    Kelso, G. F., Porteous, C. M., Coulter, C. V., Hughes, G., Porteous, W. K., Ledgerwood, E. C., Smith, R. A., and Murphy, M. P. (2001) J. Biol. Chem., 276, 4588–4596.PubMedCrossRefGoogle Scholar
  6. 6.
    Antonenko, Y. N., Avetisyan, A. V., Bakeeva, L. E., Chernyak, B. V., Chertkov, V. A., Domnina, L. V., Ivanova, O. Y., Izyumov, D. S., Khailova, L. S., Klishin, S. S., Korshunova, G. A., Lyamzaev, K. G., Muntyan, M. S., Nepryakhina, O. K., Pashkovskaya, A. A., Pletjushkina, O. Y., Pustovidko, A. V., Roginsky, V. A., Rokitskaya, T. I., Ruuge, E. K., Saprunova, V. B., Severina, I. I., Simonyan, R. A., Skulachev, I. V., Skulachev, M. V., Sumbatyan, N. V., Sviryaeva, I. V., Tashlitsky, V. N., Vassiliev, J. M., Vyssokikh, M. Y., Yaguzhinsky, L. S., Zamyatnin, A. A., Jr., and Skulachev, V. P. (2008) Biochemistry (Moscow), 73, 1273–1287.CrossRefGoogle Scholar
  7. 7.
    Smith, R. A., Porteous, C. M., Coulter, C. V., and Murphy, M. P. (1999) Eur. J. Biochem./FEBS, 263, 709–716.CrossRefGoogle Scholar
  8. 8.
    Brown, S. E., Ross, M. F., Sanjuan-Pla, A., Manas, A. R., Smith, R. A., and Murphy, M. P. (2007) Free Rad. Biol. Med., 42, 1766–1780.PubMedCrossRefGoogle Scholar
  9. 9.
    Filipovska, A., Kelso, G. F., Brown, S. E., Beer, S. M., Smith, R. A., and Murphy, M. P. (2005) J. Biol. Chem., 280, 24113–24126.PubMedCrossRefGoogle Scholar
  10. 10.
    Murphy, M. P., Echtay, K. S., Blaikie, F. H., Asin-Cayuela, J., Cocheme, H. M., Green, K., Buckingham, J. A., Taylor, E. R., Hurrell, F., Hughes, G., Miwa, S., Cooper, C. E., Svistunenko, D. A., Smith, R. A., and Brand, M. D. (2003) J. Biol. Chem., 278, 48534–48545.PubMedCrossRefGoogle Scholar
  11. 11.
    Dhanasekaran, A., Kotamraju, S., Karunakaran, C., Kalivendi, S. V., Thomas, S., Joseph, J., and Kalyanaraman, B. (2005) Free Rad. Biol. Med., 39, 567–583.PubMedCrossRefGoogle Scholar
  12. 12.
    Ban, S., Nakagawa, H., Suzuki, T., and Miyata, N. (2007) Bioorg. Med. Chem. Lett., 17, 2055–2058.PubMedCrossRefGoogle Scholar
  13. 13.
    Robinson, K. M., Janes, M. S., Pehar, M., Monette, J. S., Ross, M. F., Hagen, T. M., Murphy, M. P., and Beckman, J. S. (2006) PNAS, 103, 15038–15043.PubMedCrossRefGoogle Scholar
  14. 14.
    Dickinson, B. C., and Chang, C. J. (2008) J. Am. Chem. Soc., 130, 9638–9639.PubMedCrossRefGoogle Scholar
  15. 15.
    Johnson, L. V., Walsh, M. L., and Chen, L. B. (1980) PNAS, 77, 990–994.PubMedCrossRefGoogle Scholar
  16. 16.
    Skulachev, V. P. (1988) Membrane Bioenergetics, Springer-Verlag, Berlin-New York.CrossRefGoogle Scholar
  17. 17.
    Plotnikov, E. Y., Silachev, D. N., Chupyrkina, A. A., Danshina, M. I., Jankauskas, S. S., Morosanova, M. A., Stelmashook, E. V., Vasileva, A. K., Goryacheva, E. S., Pirogov, Y. A., Isaev, N. K., and Zorov, D. B. (2010) Biochemistry (Moscow), 75, 145–150.CrossRefGoogle Scholar
  18. 18.
    Koide, Y., Urano, Y., Kenmoku, S., Kojima, H., and Nagano, T. (2007) J. Am. Chem. Soc., 129, 10324–10325.PubMedCrossRefGoogle Scholar
  19. 19.
    Fernandez-Carneado, J., van Gool, M., Martos, V., Castel, S., Prados, P., de Mendoza, J., and Giralt, E. (2005) J. Am. Chem. Soc., 127, 869–874.PubMedCrossRefGoogle Scholar
  20. 20.
    Ross, M. F., Da Ros, T., Blaikie, F. H., Prime, T. A., Porteous, C. M., Severina, I. I., Skulachev, V. P., Kjaergaard, H. G., Smith, R. A., and Murphy, M. P. (2006) Biochem. J., 400, 199–208.PubMedCrossRefGoogle Scholar
  21. 21.
    Severin, F. F., Severina, I. I., Antonenko, Y. N., Rokitskaya, T. I., Cherepanov, D. A., Mokhova, E. N., Vyssokikh, M. Y., Pustovidko, A. V., Markova, O. V., Yaguzhinsky, L. S., Korshunova, G. A., Sumbatyan, N. V., Skulachev, M. V., and Skulachev, V. P. (2010) PNAS, 107, 663–668.PubMedCrossRefGoogle Scholar
  22. 22.
    Schonfeld, P. (1992) FEBS Lett., 303, 190–192.PubMedCrossRefGoogle Scholar
  23. 23.
    Antonenko, Y. N., Avetisyan, A. V., Cherepanov, D. A., Knorre, D. A., Korshunova, G. A., Markova, O. V., Ojovan, S. M., Perevoshchikova, I. V., Pustovidko, A. V., Rokitskaya, T. I., Severina, I. I., Simonyan, R. A., Smirnova, E. A., Sobko, A. A., Sumbatyan, N. V., Severin, F. F., and Skulachev, V. P. (2011) J. Biol. Chem., 286, 17831–17840.PubMedCrossRefGoogle Scholar
  24. 24.
    Lin, C. C., Ng, L. T., Hsu, F. F., Shieh, D. E., and Chiang, L. C. (2004) Clin. Exp. Pharm. Physiol., 31, 65–69.CrossRefGoogle Scholar
  25. 25.
    Hwang, J. M., Wang, C. J., Chou, F. P., Tseng, T. H., Hsieh, Y. S., Lin, W. L., and Chu, C. Y. (2002) Arch. Toxicol., 76, 664–670.PubMedCrossRefGoogle Scholar
  26. 26.
    Shia, C. S., Hou, Y. C., Juang, S. H., Tsai, S. Y., Hsieh, P. H., Ho, L. C., and Chao, P. D. (2009) Evidence-Based Complementary and Alternative Medicine: eCAM.Google Scholar
  27. 27.
    Shirwaikar, A., Rajendran, K., and Punitha, I. S. (2006) Biol. Pharm. Bul., 29, 1906–1910.CrossRefGoogle Scholar
  28. 28.
    Severina, I. I., Muntyan, M. S., Lewis, K., and Skulachev, V. P. (2001) IUBMB Life, 52, 321–324.PubMedCrossRefGoogle Scholar
  29. 29.
    Lyamzaev, K. G., Pustovidko, A. V., Simonyan, R. A., Rokitskaya, T. I., Domnina, L. V., Ivanova, O. Y., Severina, I. I., Sumbatyan, N. V., Korshunova, G. A., Tashlitsky, V. N., Roginsky, V. A., Antonenko, Y. N., Skulachev, M. V., Chernyak, B. V., and Skulachev, V. P. (2011) Pharm. Res., 28, 2883–2895.PubMedCrossRefGoogle Scholar
  30. 30.
    Martyushin, A. A., Tcarev, D. A., Grigorenko, M. A., Fedorov, I. I., Ramenskaya, G. V., Tashlitsky, V. N., and Skulachev, V. P. (2008) Farmatsiya, 5, 23–29.Google Scholar
  31. 31.
    Severina, I. I. (1982) Biochim. Biophys. Acta, 681, 311–317.CrossRefGoogle Scholar
  32. 32.
    Konishi, T., Murakami, N., Hatano, Y., and Nakazato, K. (1986) Biochim. Biophys. Acta, 862, 278–284.PubMedCrossRefGoogle Scholar
  33. 33.
    Naguib, Y. M. (1998) Anal. Biochem., 265, 290–298.PubMedCrossRefGoogle Scholar
  34. 34.
    Pereira, G. C., Branco, A. F., Matos, J. A., Pereira, S. L., Parke, D., Perkins, E. L., Serafim, T. L., Sardao, V. A., Santos, M. S., Moreno, A. J., Holy, J., and Oliveira, P. J. (2007) J. Pharm. Exp. Therap., 323, 636–649.CrossRefGoogle Scholar
  35. 35.
    Kovaleva, M. V., Sukhanova, E. I., Trendeleva, T. A., Zyl’kova, M. V., Ural’skaya, L. A., Popova, K. M., Saris, N. E., and Zvyagilskaya, R. A. (2009) J. Bioenerg. Biomembr., 41, 239–249.PubMedCrossRefGoogle Scholar
  36. 36.
    Andreyev, A., Bondareva, T. O., Dedukhova, V. I., Mokhova, E. N., Skulachev, V. P., Tsofina, L. M., Volkov, N. I., and Vygodina, T. V. (1989) Eur. J. Biochem./FEBS, 182, 585–592.CrossRefGoogle Scholar
  37. 37.
    Dedukhova, V. I., Mokhova, E. N., Starkov, A. A., and Leikin, Yu. N. (1993) Biochem. Mol. Biol. Int., 30, 1161–1167.PubMedGoogle Scholar
  38. 38.
    Pebay-Peyroula, E., Dahout-Gonzalez, C., Kahn, R., Trezeguet, V., Lauquin, G. J., and Brandolin, G. (2003) Nature, 426, 39–44.PubMedCrossRefGoogle Scholar
  39. 39.
    Fetisova, E. K., Avetisyan, A. V., Izyumov, D. S., Korotetskaya, M. V., Chernyak, B. V., and Skulachev, V. P. (2010) FEBS Lett., 584, 562–566.PubMedCrossRefGoogle Scholar
  40. 40.
    Chernyak, B. V., Izyumov, D. S., Lyamzaev, K. G., Pashkovskaya, A. A., Pletjushkina, O. Y., Antonenko, Y. N., Sakharov, D. V., Wirtz, K. W., and Skulachev, V. P. (2006) Biochim. Biophys. Acta, 1757, 525–534.PubMedCrossRefGoogle Scholar
  41. 41.
    Izyumov, D. S., Domnina, L. V., Nepryakhina, O. K., Avetisyan, A. V., Golyshev, S. A., Ivanova, O. Y., Korotetskaya, M. V., Lyamzaev, K. G., Pletjushkina, O. Y., Popova, E. N., and Chernyak, B. V. (2010) Biochemistry (Moscow), 75, 123–129.CrossRefGoogle Scholar
  42. 42.
    Irani, K., Xia, Y., Zweier, J. L., Sollott, S. J., Der, C. J., Fearon, E. R., Sundaresan, M., Finkel, T., and Goldschmidt-Clermont, P. J. (1997) Science, 275, 1649–1652.PubMedCrossRefGoogle Scholar
  43. 43.
    Alexandrova, A. Y., Kopnin, P. B., Vasiliev, J. M., and Kopnin, B. P. (2006) Exp. Cell Res., 312, 2066–2073.PubMedCrossRefGoogle Scholar
  44. 44.
    Havens, C. G., Ho, A., Yoshioka, N., and Dowdy, S. F. (2006) Mol. Cell. Biol., 26, 4701–4711.PubMedCrossRefGoogle Scholar
  45. 45.
    Agapova, L. S., Chernyak, B. V., Domnina, L. V., Dugina, V. B., Efimenko, A. Y., Fetisova, E. K., Ivanova, O. Y., Kalinina, N. I., Khromova, N. V., Kopnin, B. P., Kopnin, P. B., Korotetskaya, M. V., Lichinitser, M. R., Lukashev, A. L., Pletjushkina, O. Y., Popova, E. N., Skulachev, M. V., Shagieva, G. S., Stepanova, E. V., Titova, E. V., Tkachuk, V. A., Vasiliev, J. M., and Skulachev, V. P. (2008) Biochemistry (Moscow), 73, 1300–1316.CrossRefGoogle Scholar
  46. 46.
    Sundaresan, M., Yu, Z. X., Ferrans, V. J., Irani, K., and Finkel, T. (1995) Science, 270, 296–299.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • B. V. Chernyak
    • 1
  • Y. N. Antonenko
    • 1
  • E. R. Galimov
    • 1
  • L. V. Domnina
    • 1
  • V. B. Dugina
    • 1
  • R. A. Zvyagilskaya
    • 2
  • O. Yu. Ivanova
    • 1
  • D. S. Izyumov
    • 1
  • K. G. Lyamzaev
    • 1
  • A. V. Pustovidko
    • 1
  • T. I. Rokitskaya
    • 1
  • A. G. Rogov
    • 2
  • I. I. Severina
    • 1
  • R. A. Simonyan
    • 1
  • M. V. Skulachev
    • 1
  • V. N. Tashlitsky
    • 1
  • E. V. Titova
    • 1
  • T. A. Trendeleva
    • 2
  • G. S. Shagieva
    • 1
  1. 1.Belozersky Institute of Physico-Chemical Biology and Center of MitoengineeringLomonosov Moscow State UniversityMoscowRussia
  2. 2.Bach Institute of BiochemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations