Advertisement

Biochemistry (Moscow)

, Volume 77, Issue 9, pp 947–955 | Cite as

Transmembrane electric potential difference in the protein-pigment complex of photosystem 2

  • M. D. MamedovEmail author
  • V. N. Kurashov
  • I. O. Petrova
  • A. Yu. Semenov
Special Articles in Memory of E. A. Liberman Review
  • 179 Downloads

Abstract

The protein-pigment complex of photosystem 2 (PS2) localized in the thylakoid membranes of higher plants, algae, and cyanobacteria is the main source of oxygen on Earth. The light-induced functioning of PS2 is directly linked to electron and proton transfer across the membrane, which results in the formation of transmembrane electric potential difference (ΔΨ). The major contribution to ΔΨ of the PS2 reaction center is due to charge separation between the primary chlorophyll donor P680 and the quinone acceptor QA, accompanied by re-reduction of P 680 + by the redox-active tyrosine residue YZ. The processes associated with the uptake and release of protons on the acceptor and donor sides of the enzyme, respectively, are also coupled with ΔΨ generation. The objective of this work was to describe the mechanisms of ΔΨ generation associated with the S-state transitions of the water-oxidizing complex in intact PS2 complex and in PS2 preparation depleted of Mn4Ca cluster in the presence of artificial electron donors. The findings elucidate the mechanisms of electrogenic reactions on the PS2 donor side and may be a basis for development of an effective solar energy conversion system.

Key words

photosystem 2 reaction center S-state transitions proteoliposomes electron donors direct electrometric method photoelectric response electrogenicity channels 

Abbreviations

DAD

diaminodurene (2,3,5,6-tetramethyl-p-phenylenediamine)

DCPIP

2,6-dichlorophenolindophenol

DPC

1,5-diphenylcarbazide

OEC

oxygen-evolving complex

PMS

phenazine methosulfate

PS

photosystem

RC

reaction center

TMPD

N,N,N′,N′-tetramethyl-p-phenylenediamine

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ferreira, K. N., Iverson, T. M., Maghlaoui, K., Barber, J., and Iwata, S. (2004) Science, 303, 1831–1838.PubMedCrossRefGoogle Scholar
  2. 2.
    Guskov, A., Kern, J., Gabdulkhakov, A., Broser, M., Zouni, A., and Saenger, W. (2009) Nat. Struct. Mol. Biol., 16, 334–342.PubMedCrossRefGoogle Scholar
  3. 3.
    Umena, Y., Kawakami, K., Shen, J.-R., and Kamiya, N. (2011) Nature, 473, 55–60.PubMedCrossRefGoogle Scholar
  4. 4.
    Styring, S., Sjoholm, J., and Mamedov, F. (2012) Biochim. Biophys. Acta, 1817, 26–87.CrossRefGoogle Scholar
  5. 5.
    Shinkarev, V. P. (2004) in Chlorophyll Fluorescence: a Signature of Photosynthesis (Papageorgiou, G. C., and Govindjee) Kluwer Academic Publishers, Amsterdam, pp. 197–229.Google Scholar
  6. 6.
    Shelaev, I. V., Gostev, F. E., Vishnev, M. I., Shkuropatov, A. Ya., Ptushenko, V. V., Mamedov, M. D., Sarkisov, O. M., Nadtochenko, V. A., Semenov, A. Yu., and Shuvalov, V. A. (2011) Photochem. Photobiol., 104, 44–50.CrossRefGoogle Scholar
  7. 7.
    Novoderezhkin, V. I., Dekker, J. P., and van Grondelle, R. (2007) Biophys. J., 93, 1293–1311.PubMedCrossRefGoogle Scholar
  8. 8.
    Rappaport, F., and Lavergne, J. (1997) Biochemistry, 36, 15294–15302.PubMedCrossRefGoogle Scholar
  9. 9.
    Sproviero, E. M., Gascon, J. A., McEvoy, J. P., Brudvig, G. W., and Batista, V. S. (2008) J. Am. Chem. Soc., 130, 3428–3442.PubMedCrossRefGoogle Scholar
  10. 10.
    Renger, G., and Renger, T. (2008) Photosynth. Res., 98, 53–80.PubMedCrossRefGoogle Scholar
  11. 11.
    Gernot, R., and Kuhn, P. (2007) Biochim. Biophys. Acta, 1767, 458–471.CrossRefGoogle Scholar
  12. 12.
    Haumann, M., Liebisch, P., Muller, C., Barra, M., Grabolle, M., and Dau, H. (2005) Science, 310, 1019–1021.PubMedCrossRefGoogle Scholar
  13. 13.
    Dau, H., and Haumann, M. (2007) Biochim. Biophys. Acta, 1767, 472–483.PubMedCrossRefGoogle Scholar
  14. 14.
    Semenov, A. Yu., Mamedov, M. D., and Chamorovsky, S. K. (2006) in Photosystem I: the Light-Driven, Plastocyanine:Ferredoxin Oxidoreductase (Golbeck, J. H., ed.) Springer, Dordrecht, pp. 319–424.Google Scholar
  15. 15.
    Trissl, H. W., and Leibl, W. (1989) FEBS Lett., 244, 85–88.CrossRefGoogle Scholar
  16. 16.
    Pokorny, A., Wulf, K., and Trissl, H.-W. (1994) Biochim. Biophys. Acta, 1184, 65–70.CrossRefGoogle Scholar
  17. 17.
    Semenov, A., Cherepanov, D., and Mamedov, M. (2008) Photosynth. Res., 98, 121–130.PubMedCrossRefGoogle Scholar
  18. 18.
    Haumann, M., Mulkidjanian, A., and Junge, W. (1997) Biochemistry, 36, 9304–9315.PubMedCrossRefGoogle Scholar
  19. 19.
    Mamedov, M. D., Beshta, O. P., Gurovskaya, K. N., Mamedova, A. A., Neverov, K. D., Samuilov, V. D., and Semenov, A. Yu. (1999) Biochemistry (Moscow), 64, 504–509.Google Scholar
  20. 20.
    Kurashov, V. N., Lovyagina, E. R., Shkolnikov, D. Y., Solntsev, M. K., Mamedov, M. D., and Semin, B. K. (2009) Biochim. Biophys. Acta, 1787, 1492–1498.PubMedCrossRefGoogle Scholar
  21. 21.
    Shimada, Y., Suzuki, H., Tsuchiya, T., Mimuro, M., and Noguchi, T. (2011) J. Am. Chem. Soc., 133, 3808–3811.PubMedCrossRefGoogle Scholar
  22. 22.
    Ishikita, H., Saenger, W., Loll, B., Biesiadka, J., and Knapp, E. W. (2006) Biochemistry, 45, 2063–2071.PubMedCrossRefGoogle Scholar
  23. 23.
    Renger, G. (2004) Biochim. Biophys. Acta, 1655, 195–204.PubMedCrossRefGoogle Scholar
  24. 24.
    Muh, F., and Zouni, A. (2011) Front. Biosci., 17, 3072–3132.CrossRefGoogle Scholar
  25. 25.
    Ho, F. M. (2012) Biochim. Biophys. Acta, 1817, 106–120.PubMedCrossRefGoogle Scholar
  26. 26.
    Belevich, I., and Verkhovsky, M. I. (2008) Antioxid. Redox Signal., 10, 1–29.PubMedCrossRefGoogle Scholar
  27. 27.
    Murray, J. W., and Barber, J. (2007) J. Struct. Biol., 159, 228–237.PubMedCrossRefGoogle Scholar
  28. 28.
    Ho, F. M., and Styring, S. (2008) Biochim. Biophys. Acta, 1777, 140–153.PubMedCrossRefGoogle Scholar
  29. 29.
    Gabdulkhakov, A., Guskov, A., Broser, M., Kern, J., Muh, F., Saenger, W., and Zouni, A. (2009) Structure, 17, 1223–1234.PubMedCrossRefGoogle Scholar
  30. 30.
    Swanson, J. M. J., and Simons, J. (2009) J. Phys. Chem. B., 113, 5149–5161.PubMedCrossRefGoogle Scholar
  31. 31.
    McEvoy, J. P., and Brudvig, G. W. (2004) Phys. Chem. Chem. Phys., 6, 4754–4763.CrossRefGoogle Scholar
  32. 32.
    Hoganson, C. W., and Babcock, G. T. (1997) Science, 277, 1953–1956.PubMedCrossRefGoogle Scholar
  33. 33.
    Paddock, M. L., Graige, M. S., Feher, G., and Okamura, M. Y. (1999) Proc. Natl. Acad. Sci. USA, 96, 6183–6188.PubMedCrossRefGoogle Scholar
  34. 34.
    Kuznetsova, S. S., Atsarkina, N. V., Vygodina, T. V., Siletskiy, S. A., and Konstantinov, A. A. (2005) Biochemistry (Moscow), 70, 128–136.CrossRefGoogle Scholar
  35. 35.
    Klishin, S. S., Junge, W., and Mulkidjanian, A. Y. (2002) Biochim. Biophys. Acta, 1553, 177–182.PubMedCrossRefGoogle Scholar
  36. 36.
    Giachini, L., Francia, F., Veronesi, G., Lee, D.-W., Daldal, F., Huang, L.-S., Berry, E. A., Cocco, T., Papa, S., Boscherini, F., and Venturoli, G. (2007) Biophys. J., 93, 2934–2951.PubMedCrossRefGoogle Scholar
  37. 37.
    Wydrzynski, T., Hillier, W., and Messinger, J. (1996) Physiol. Plant., 96, 342–350.CrossRefGoogle Scholar
  38. 38.
    Babcock, G. T., and Sauer, K. (1975) Biochim. Biophys. Acta, 396, 48–62.PubMedCrossRefGoogle Scholar
  39. 39.
    Conjeaud, H., and Mathis, P. (1980) Biochim. Biophys. Acta, 590, 353–359.PubMedCrossRefGoogle Scholar
  40. 40.
    Blubaugh, D. J., and Cheniae, G. M. (1990) Biochemistry, 29, 5109–5118.PubMedCrossRefGoogle Scholar
  41. 41.
    Chroni, S., and Ghanotakis, D. F. (2001) Biochim. Biophys. Acta, 1504, 432–437.PubMedCrossRefGoogle Scholar
  42. 42.
    Semin, B. K., Ghirardi, M. L., and Seibert, M. (2002) Biochemistry, 41, 5854–5864.PubMedCrossRefGoogle Scholar
  43. 43.
    Dasgupta, J., Ananyev, G. M., and Dismukes, G. C. (2008) Coord. Chem. Rev., 252, 347–360.PubMedCrossRefGoogle Scholar
  44. 44.
    Gopta, O. A., Tyunyatkina, A. A., Kurashov, V. N., Semenov, A. Yu., and Mamedov, M. D. (2008) Eur. Biophys. J., 37, 1045–1050.PubMedCrossRefGoogle Scholar
  45. 45.
    Toth, S. Z., Puthur, J. T., Nagy, V., and Garab, G. (2009) Plant Physiol., 149, 1568–1578.PubMedCrossRefGoogle Scholar
  46. 46.
    Kurashov, V. N., Allakhverdiev, S. I., Zharmukhamedov, S. K., Nagata, T., Klimov, V. V., Semenov, A. Yu., and Mamedov, M. D. (2009) Photochem. Photobiol. Sci., 8, 162–166.PubMedCrossRefGoogle Scholar
  47. 47.
    Nagata, T., Zharmukhamedov, S. K., Khorobrykh, A. A., Klimov, V. V., and Allakhverdiev, S. I. (2008) Photosynth. Res., 98, 277–284.PubMedCrossRefGoogle Scholar
  48. 48.
    Mobius, K. (2000) Chem. Soc. Rev., 29, 129–134.CrossRefGoogle Scholar
  49. 49.
    Beatty, J. T., Gest, H., and Govindjee (2003) Photosynth. Res., 76, 1–11.CrossRefGoogle Scholar
  50. 50.
    Drachev, L. A., Kaminskaya, O. P., Konstantinov, A. A., Semenov, A. Yu., and Skulachev, V. P. (1985) FEBS Lett., 189, 45–49.CrossRefGoogle Scholar
  51. 51.
    Drachev, L. A., Kaminskaya, O. P., Konstantinov, A. A., Kotova, E. A., Mamedov, M. D., Samuilov, V. D., Semenov, A. Yu., and Skulachev, V. P. (1986) Biochim. Biophys. Acta, 848, 137–146.CrossRefGoogle Scholar
  52. 52.
    Gourovskaya, K. N., Mamedov M. D., Vassiliev, I. R., Golbeck, J. H., and Semenov, A. Y. (1997) FEBS Lett., 414, 193–196.PubMedCrossRefGoogle Scholar
  53. 53.
    Mamedov, M. D., Gadzhieva, R. M., Gourovskaya, K. N., Drachev, L. A., and Semenov, A. Yu. (1996) J. Bioenerg. Biomembr., 28, 517–522.PubMedCrossRefGoogle Scholar
  54. 54.
    Mamedov, M. D., Mamedova, A. A., Chamorovsky, S. K., and Semenov, A. Yu. (2001) FEBS Lett., 500, 172–176.PubMedCrossRefGoogle Scholar
  55. 55.
    Mamedov, M. D., Kurashov, V. D., Cherepanov, D. A., and Semenov, A. Yu. (2010) Front. Biosci., 15, 1007–1017.PubMedCrossRefGoogle Scholar
  56. 56.
    Marcus, R. A., and Sutin, N. (1985) Biochim. Biophys. Acta, 811, 265–322.CrossRefGoogle Scholar
  57. 57.
    Gray, H. B., and Winkler, J. R. (1996) Annu. Rev. Biochem., 65, 537–561.PubMedCrossRefGoogle Scholar
  58. 58.
    Moser, C. C., Keske, J. M., Warncke, K., Farid, R. S., and Dutton, P. L. (1992) Nature, 355, 796–802.PubMedCrossRefGoogle Scholar
  59. 59.
    Mamedov, M. D., Kurashov, V. N., Petrova, I. O., Zaspa, A. A., and Semenov, A. Yu. (2010) Biochemistry (Moscow), 75, 579–584.CrossRefGoogle Scholar
  60. 60.
    Semenov, N. N. (1981) Science and Society [in Russian], Nauka, Moscow.Google Scholar
  61. 61.
    Balzani, V., Credi, A., and Venturi, M. (2008) Chem. Sus. Chem., 1, 26–58.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • M. D. Mamedov
    • 1
    Email author
  • V. N. Kurashov
    • 1
  • I. O. Petrova
    • 1
  • A. Yu. Semenov
    • 1
  1. 1.Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations