Advertisement

Biochemistry (Moscow)

, Volume 77, Issue 8, pp 925–933 | Cite as

Impact on N-Glycosylation profile of monoclonal anti-D antibodies as a way to control their immunoregulatory and cytotoxic properties

  • N. I. OlovnikovaEmail author
  • M. A. Ershler
  • O. V. Grigorieva
  • A. V. Petrov
  • G. Yu. Miterev
Article

Abstract

Prophylaxis of hemolytic disease of newborns is based on the ability of polyclonal anti-D antibodies for sup-pressing maternal immune response against D-positive fetal red blood cells. The immunosuppressive effect of anti-D antibody is mediated by interaction between its Fc-fragment and low-affinity IgG Fc-receptor (FcγR) on the immune cell. No clinically effective monoclonal anti-D antibody (mAb) that can replace polyclonal anti-D immunoglobulin has been developed yet. The goals of this study were comparison of structural and functional properties of human anti-D polyclonal and monoclonal Abs and assessment of the possibility to manipulate the effector properties of the mAb. N-Glycosylation and particularly the content of nonfucosylated glycans are crucial for affinity of mAb to FcγRIIIA, which plays the key role in the clearance of sensitized cells. We studied and compared glycoprofiles and FcγRIIIA-mediated hemolytic ability of human polyclonal antibodies and anti-D mAbs produced by human B-cell lines, human-rodent heterohybridomas, and a human non-lymphoid cell line PER.C6. Replacement of producing cell line and use of glycosylation modulators can convert an inert mAb into an active one. Nevertheless, rodent cell lines, as well as human non-lymphoid cells, distort natural glycosylation of human IgG and could lead to the loss of immunosuppressive properties. All of the anti-D mAbs secreted by human B-cell lines have a glycoprofile close to human serum IgG. Hence, the constant ratio of IgG glycoforms in human serum is predetermined by glycosylation at the level of the individual antibody-producing cell. The anti-D fraction of polyclonal anti-D immunoglobulin compared to the total human IgG contains more nonfucosylated glycans. Thus, only human trans-formed B-cells are an appropriate source for efficient anti-D mAbs that can imitate the action of polyclonal anti-D IgG.

Key words

monoclonal antibodies anti-D glycosylation FcγR ADCC immunosuppression 

Abbreviations

ADCC

antibody-dependent cellular cytotoxicity

BCR

B cell receptor

CHO

Chinese hamster ovary cells

FcγR

FcΓ receptor

LBL

B-lymphoblastoid line cells

mAb

monoclonal antibody

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bowman, J. M. (1988) Transfus. Med. Rev., 2, 129–150.PubMedCrossRefGoogle Scholar
  2. 2.
    Bowman, J. (2003) Transfusion, 43, 1661–1666.PubMedCrossRefGoogle Scholar
  3. 3.
    Von Behring, E., and Wernicke, E. (1892) Z. Hyg. Infektionskrankheiten, 12, 10–44.CrossRefGoogle Scholar
  4. 4.
    Mollison, P. L., Crome, P., Hughes-Jones, N. C., and Rochna, E. (1965) Br. J. Haematol., 11, 461–470.PubMedCrossRefGoogle Scholar
  5. 5.
    Mollison, P. L. (1984) in Hemolytic Disease of the Newborn (Garratty, G., ed.) American Association of Blood Banks, Arlington, VA, pp. 1–32.Google Scholar
  6. 6.
    Olovnikova, N. I., Belkina, E. V., Drize, N. I., Lemeneva, L. N., Miterev, G. Yu., Nikolaeva, T. L., and Chertkov, I. L. (2000) Byull. Eksp. Biol. Med., 129, 66–70.CrossRefGoogle Scholar
  7. 7.
    Brinc, D., Le-Tien, H., Crow, A. R., Semple, J. W., Freedman, J., and Lazarus, A. H. (2010) Transfusion, 50, 2016–2025.PubMedCrossRefGoogle Scholar
  8. 8.
    Heyman, B. (2003) Immunol. Lett., 88, 157–161.PubMedCrossRefGoogle Scholar
  9. 9.
    Hjelm, F., Carlsson, F., Getahun, A., and Heyman, B. (2006) Scand. J. Immunol., 64, 177–184.PubMedCrossRefGoogle Scholar
  10. 10.
    Ravetch, J. V., and Kinet, J. P. (1991) Annu. Rev. Immunol., 9, 457–492.PubMedCrossRefGoogle Scholar
  11. 11.
    Siberil, S., Dutertre, C. A., Fridman, W. H., and Teillaud, J. L. (2007) Crit. Rev. Oncol. Hematol., 62, 26–33.PubMedCrossRefGoogle Scholar
  12. 12.
    Amigorena, S., Bonnerot, C., Drake, J. R., Choquet, D., Hunziker, W., Guillet, J. G., Webster, P., Sautes, C., Mellman, I., and Fridman, W. H. (1992) Science, 256, 1808–1812.PubMedCrossRefGoogle Scholar
  13. 13.
    Aschermann, S., Lux, A., Baerenwaldt, A., Biburger, M., and Nimmerjahn, F. (2010) Clin. Exp. Immunol., 160, 161–167.PubMedCrossRefGoogle Scholar
  14. 14.
    Daeron, M. (1997) Annu. Rev. Immunol., 15, 203–234.PubMedCrossRefGoogle Scholar
  15. 15.
    Clynes, R., Maizes, J. S., Guinamard, R., Ono, M., Takai, T., and Ravetch, J. V. (1999) J. Exp. Med., 189, 179–185.PubMedCrossRefGoogle Scholar
  16. 16.
    Clynes, R. A., Towers, T. L., Presta, L. G., and Ravetch, J. V. (2000) Nat. Med., 6, 443–446.PubMedCrossRefGoogle Scholar
  17. 17.
    Cartron, G., Dacheux, L., Salles, G., Solal-Celigny, P., Bardos, P., Colombat, P., and Watier, H. (2002) Blood, 99, 754–758.PubMedCrossRefGoogle Scholar
  18. 18.
    Weng, W. K., and Levy, R. (2003) J. Clin. Oncol., 21, 3940–3947.PubMedCrossRefGoogle Scholar
  19. 19.
    Clarkson, S. B., Kimberly, R. P., Valinsky, J. E., Witmer, M. D., Bussel, J. B., Nachman, R. L., and Unkeless, J. C. (1986) J. Exp. Med., 164, 474–489.PubMedCrossRefGoogle Scholar
  20. 20.
    Miescher, S., Spycher, M. O., Amstutz, H., de Haas, M., Kleijer, M., Kalus, U. J., Radtke, H., Hubsch, A., Andresen, I., Martin, R. M., and Bichler, J. (2004) Blood, 103, 4028–4035.PubMedCrossRefGoogle Scholar
  21. 21.
    Phillips, N. E., and Parker, D. C. (1984) J. Immunol., 132, 627–632.PubMedGoogle Scholar
  22. 22.
    Siberil, S., de Romeuf, C., Bihoreau, N., Fernandez, N., Meterreau, J. L., Regenman, A., Nony, E., Gaucher, C., Glacet, A., Jorieux, S., Klein, P., Hogarth, M. P., Fridman, W. H., Bourel, D., Beliard, R., and Teillaud, J. L. (2006) Clin. Immunol., 118, 170–179.PubMedCrossRefGoogle Scholar
  23. 23.
    Lazar, G. A., Dang, W., Karki, S., Vafa, O., Peng, J. S., Hyun, L., Chan, C., Chung, H. S., Eivazi, A., Yoder, S. C., Vielmetter, J., Carmichael, D. F., Hayes, R. J., and Dahiyat, B. I. (2006) Proc. Natl. Acad. Sci. USA, 103, 4005–4010.PubMedCrossRefGoogle Scholar
  24. 24.
    Kumpel, B. M., Goodrick, M. J., Pamphilon, D. H., Fraser, I. D., Poole, G. D., Morse, C., Standen, G. R., Chapman, G. E., Thomas, D. P., and Anstee, D. J. (1995) Blood, 86, 1701–1709.PubMedGoogle Scholar
  25. 25.
    Kumpel, B. M. (2007) Vox Sang., 93, 99–111.PubMedCrossRefGoogle Scholar
  26. 26.
    Kumpel, B. M. (2008) Clin. Exp. Immunol., 154, 1–5.PubMedCrossRefGoogle Scholar
  27. 27.
    Lux, A., and Nimmerjahn, F. (2011) Adv. Exp. Med. Biol., 780, 113–124.PubMedCrossRefGoogle Scholar
  28. 28.
    Shields, R. L., Lai, J., Keck, R., O’Connell, L. Y., Hong, K., Meng, Y. G., Weikert, S. H., and Presta, L. G. (2002) J. Biol. Chem., 277, 26733–26740.PubMedCrossRefGoogle Scholar
  29. 29.
    Shinkawa, T., Nakamura, K., Yamane, N., Shoji-Hosaka, E., Kanda, Y., Sakurada, M., Uchida, K., Anazawa, H., Satoh, M., Yamasaki, M., Hanai, N., and Shitara, K. (2003) J. Biol. Chem., 278, 3466–3473.PubMedCrossRefGoogle Scholar
  30. 30.
    Niwa, R., Hatanaka, S., Shoji-Hosaka, E., Sakurada, M., Kobayashi, Y., Uehara, A., Yokoi, H., Nakamura, K., and Shitara, K. (2004) Clin. Cancer Res., 10, 6248–6255.PubMedCrossRefGoogle Scholar
  31. 31.
    Niwa, R., Sakurada, M., Kobayashi, Y., Uehara, A., Matsushima, K., Ueda, R., Nakamura, K., and Shitara, K. (2005) Clin. Cancer Res., 11, 2327–2336.PubMedCrossRefGoogle Scholar
  32. 32.
    Yamane-Ohnuki, N., Kinoshita, S., Inoue-Urakubo, M., Kusunoki, M., Iida, S., Nakano, R., Wakitani, M., Niwa, R., Sakurada, M., Uchida, K., Shitara, K., and Satoh, M. (2004) Biotechnol. Bioeng., 87, 614–622.PubMedCrossRefGoogle Scholar
  33. 33.
    Kanda, Y., Yamane-Ohnuki, N., Sakai, N., Yamano, K., Nakano, R., Inoue, M., Misaka, H., Iida, S., Wakitani, M., Konno, Y., Yano, K., Shitara, K., Hosoi, S., and Satoh, M. (2006) Biotechnol. Bioeng., 94, 680–688.PubMedCrossRefGoogle Scholar
  34. 34.
    Olovnikova, N. I., Ershler, M. A., Belkina, E. V., Nikolaeva, T. L., and Miterev, G. Yu. (2009) Byull. Eksp. Biol. Med., 147, 448–452.CrossRefGoogle Scholar
  35. 35.
    Tandai, M., Endo, T., Sasaki, S., Masuho, Y., Kochibe, N., and Kobata, A. (1991) Arch. Biochem. Biophys., 291, 339–348.PubMedCrossRefGoogle Scholar
  36. 36.
    Rademacher, T. W. (1993) Biologicals, 21, 103–104.PubMedCrossRefGoogle Scholar
  37. 37.
    Hossler, P., Khattak, S. F., and Li, Z. J. (2009) Glycobiology, 19, 936–949.PubMedCrossRefGoogle Scholar
  38. 38.
    Jones, D., Kroos, N., Anema, R., van Montfort, B., Vooys, A., van der Kraats, S., van der Helm, E., Smits, S., Schouten, J., Brouwer, K., Lagerwerf, F., van Berkel, P., Opstelten, D. J., Logtenberg, T., and Bout, A. (2003) Biotechnol. Prog., 19, 163–168.PubMedCrossRefGoogle Scholar
  39. 39.
    Larrick, J. W., Danielsson, L., Brenner, C. A., Abrahamson, M., Fry, K. E., and Borrebaeck, C. A. (1989) Biochem. Biophys. Res. Commun., 160, 1250–1256.PubMedCrossRefGoogle Scholar
  40. 40.
    Zhou, Q., Shankara, S., Roy, A., Qiu, H., Estes, S., McVie-Wylie, A., Culm-Merdek, K., Park, A., Pan, C., and Edmunds, T. (2008) Biotechnol. Bioeng., 99, 652–665.PubMedCrossRefGoogle Scholar
  41. 41.
    Walker, R. H. (ed.) (1993) Technical Manual, American Association of Blood Banks, Bethesda, USA, pp. 662–663.Google Scholar
  42. 42.
    Ducrot, T., Beliard, R., Glacet, A., Klein, P., Harbonnier, S., Benmostefa, N., and Bourel, D. (1996) Vox Sang., 71, 30–36.PubMedCrossRefGoogle Scholar
  43. 43.
    Olovnikova, N. I., Grigor’eva, O. V., and Petrov, A. V. (2012) Byull. Eksp. Biol. Med., in press.Google Scholar
  44. 44.
    Kumpel, B. M. (1997) Vox Sang., 72, 45–51.PubMedCrossRefGoogle Scholar
  45. 45.
    Lambin, P., Debbia, M., Puillandre, P., and Brossard, Y. (2002) Transfusion, 42, 1537–1546.PubMedCrossRefGoogle Scholar
  46. 46.
    Kumpel, B. M., Rademacher, T. W., Rook, G. A., Williams, P. J., and Wilson, I. B. (1994) Hum. Antibodies Hybridomas, 5, 143–151.PubMedGoogle Scholar
  47. 47.
    Scallon, B. J., Tam, S. H., McCarthy, S. G., Cai, A. N., and Raju, T. S. (2007) Mol. Immunol., 44, 1524–1534.PubMedCrossRefGoogle Scholar
  48. 48.
    Kobata, A. (2008) Biochim. Biophys. Acta, 1780, 472–478.PubMedCrossRefGoogle Scholar
  49. 49.
    Olovnikova, N. I., Belkina, E. V., Nikolaeva, T. L., Miterev, G. Yu., and Chertkov, I. L. (2006) Byull. Eksp. Biol. Med., 141, 57–61.CrossRefGoogle Scholar
  50. 50.
    Olovnikova, N. (2012) in Immunosuppression — Role in Health and Disease (Kapur, S., and Portela, M. B., eds.) InTech, Rijeka, Croatia, pp. 77–106 (http://www.intech-web.org/books/show/title/immunosuppression-role-in-health-and-diseases/).Google Scholar
  51. 51.
    Cooper, N. R., Moore, M. D., and Nemerow, G. R. (1988) Annu. Rev. Immunol., 6, 85–113.PubMedCrossRefGoogle Scholar
  52. 52.
    Beliard, R., Waegemans, T., Notelet, D., Massad, L., Dhainaut, F., Romeuf, C., Guemas, E., Haazen, W., Bourel, D., Teillaud, J. L., and Prost, J. F. (2008) Br. J. Haematol., 141, 109–119.PubMedCrossRefGoogle Scholar
  53. 53.
    Raju, T. S. (2008) Curr. Opin. Immunol., 20, 471–478.PubMedCrossRefGoogle Scholar
  54. 54.
    Kobata, A. (1990) Glycobiology, 1, 5–8.PubMedCrossRefGoogle Scholar
  55. 55.
    Furukawa, K., and Kobata, A. (1991) Mol. Immunol., 28, 1333–1340.PubMedCrossRefGoogle Scholar
  56. 56.
    Omtvedt, L. A., Royle, L., Husby, G., Sletten, K., Radcliffe, C. M., Harvey, D. J., Dwek, R. A., and Rudd, P. M. (2006) Arthritis Rheum., 54, 3433–3440.PubMedCrossRefGoogle Scholar
  57. 57.
    Jefferis, R. (2009) Trends Pharmacol. Sci., 30, 356–362.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • N. I. Olovnikova
    • 1
    Email author
  • M. A. Ershler
    • 1
  • O. V. Grigorieva
    • 2
  • A. V. Petrov
    • 2
  • G. Yu. Miterev
    • 3
  1. 1.Hematology Research CenterMinistry of Health and Social DevelopmentMoscowRussia
  2. 2.International Biotechnology Center “Generium”MoscowRussia
  3. 3.Hematolog LtdMoscowRussia

Personalised recommendations