Advertisement

Biochemistry (Moscow)

, Volume 77, Issue 8, pp 917–924 | Cite as

Evaluation of the electrical potential on the membrane of the extremely alkaliphilic bacterium Thioalkalivibrio

  • M. S. MuntyanEmail author
  • D. A. Morozov
  • S. S. Klishin
  • N. V. Khitrin
  • G. Ya. Kolomijtseva
Article

Abstract

The electrical potential on the membrane was measured in cells of strains AL2 and ALJ15 of the extremely alkaliphilic bacterium Thioalkalivibrio versutus using the penetrating cation tetraphenylphosphonium (TPP+) and a TPP+-selective electrode. The potentials were -228 ± 5 and -224 ± 5 mV, respectively, i.e. higher than in most alkaliphilic bacteria. Membrane potential in the cells was estimated by measuring the inner cell volume by two independent methods: (1) estimation of total cell volume by light microscopy and (2) estimation of the inner aqueous volume of the cells with allowance for the distribution difference of tritium labeled water penetrating through the membranes and a nonpenetrating colored protein. The inner cell volume was 2.4 ± 0.2 and 2.2 ± 0.1 μl/mg of cell protein by the two methods, respectively. Computer computation was used as an alternative to manual calculation to count the number of cells for estimation of total cell volume.

Key words

electrochemical potential of H+ ions transmembrane electric potential difference alkaliphilic bacteria 

Abbreviations

CCCP

carbonylcyanide m-chlorophenylhydrazone

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mitchell, P. (1966) Chemiosmotic Coupling in Oxidative and Photosynthetic Phosphorylation, Glynn Research, Bodmin Cornwall, U. K.Google Scholar
  2. 2.
    Skulachev, V. P., Sharaf, A. A., and Liberman, E. A. (1967) Nature, 216, 718–719.PubMedCrossRefGoogle Scholar
  3. 3.
    Kaback, H. R. (1974) Science, 186, 882–892.PubMedCrossRefGoogle Scholar
  4. 4.
    Liberman, E. A., Topaly, V. P., Tsofina, L. M., Jasaitis, A. A., and Skulachev, V. P. (1969) Nature, 222, 1076–1078.PubMedCrossRefGoogle Scholar
  5. 5.
    Liberman, E. A., and Skulachev, V. P. (1970) Biochim. Biophys. Acta, 216, 30–41.PubMedCrossRefGoogle Scholar
  6. 6.
    Sorokin, D. Y., Lysenko, A. M., Mityushina, L. L., Tourova, T. P., Jones, B. E., Rainey, F. A., Robertson, L. A., and Kuenen, G. J. (2001) Int. J. Sys. Evol. Microbiol., 51, 565–580.Google Scholar
  7. 7.
    Banciu, H., Sorokin, D. Yu., Rijpstra, W. I. C., Damste, J. S. S., Galinski, E. A., Takaichi, S., Muyzer, G., and Kuenen, J. G. (2005) FEMS Microbiol. Lett., 243, 181–187.PubMedCrossRefGoogle Scholar
  8. 8.
    Takaichi, S., Maoka, T., Akimoto, N., Sorokin, D. Yu., Banciu, H., and Kuenen, G. J. (2004) Tetrahedron Lett., 45, 8303–8305.CrossRefGoogle Scholar
  9. 9.
    Rottenberg, H. (1979) Methods Enzymol., 55, 547–569.PubMedCrossRefGoogle Scholar
  10. 10.
    Kamo, N., Muratsugu, M., Hongoh, R., and Kobatake, Y. (1979) J. Membr. Biol., 49, 105–121.PubMedCrossRefGoogle Scholar
  11. 11.
    Kashket, E. R., Blanchard, A. G., and Metzger, W. C. (1980) J. Bacteriol., 143, 128–134.PubMedGoogle Scholar
  12. 12.
    Cox, J. C., Nicholls, D. G., and Ingledew, W. J. (1979) Biochem. J., 178, 195–200.PubMedGoogle Scholar
  13. 13.
    Krulwich, T. A., Davidson, L. F., Filip, S. J., Jr., Zuckerman, R. S., and Guffanti, A. A. (1978) J. Biol. Chem., 253, 4599–4603.PubMedGoogle Scholar
  14. 14.
    Guffanti, A. A., Blanco, R., and Krulwich, T. A. (1979) J. Biol. Chem., 254, 1033–1037.PubMedGoogle Scholar
  15. 15.
    Bakker, E. P., and Harold, F. M. (1980) J. Biol. Chem., 255, 433–440.PubMedGoogle Scholar
  16. 16.
    Sturr, M. G., Guffanti, A. A., and Krulwich, T. A. (1994) J. Bacteriol., 176, 3111–3116.PubMedGoogle Scholar
  17. 17.
    Kitada, M., Guffanti, A. A., and Krulwich, T. A. (1982) J. Bacteriol., 152, 1096–1104.PubMedGoogle Scholar
  18. 18.
    Collins, S. H., and Hamilton, W. A. (1976) J. Bacteriol., 126, 1224–1231.PubMedGoogle Scholar
  19. 19.
    Michel, H., and Oesterhelt, D. (1980) Biochemistry, 19, 4615–4619.PubMedCrossRefGoogle Scholar
  20. 20.
    Hsung, J. C., and Haug, A. (1977) FEBS Lett., 73, 47–50.PubMedCrossRefGoogle Scholar
  21. 21.
    Krulwich, T. A., Sachs, G., and Padan, E. (2011) Nat. Rev. Microbiol., 9, 330–343.PubMedCrossRefGoogle Scholar
  22. 22.
    Guffanti, A. A., and Krulwich, T. A. (1994) J. Biol. Chem., 269, 21576–21582.PubMedGoogle Scholar
  23. 23.
    Skulachev, V. P. (1985) Eur. J. Biochem., 151, 199–208.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • M. S. Muntyan
    • 1
    Email author
  • D. A. Morozov
    • 1
  • S. S. Klishin
    • 1
  • N. V. Khitrin
    • 1
  • G. Ya. Kolomijtseva
    • 1
  1. 1.Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations