Advertisement

Biochemistry (Moscow)

, Volume 77, Issue 8, pp 901–909 | Cite as

Effect of calcium ions on electron transfer between hemes a and a 3 in cytochrome c oxidase

  • T. V. VygodinaEmail author
  • A. V. Dyuba
  • A. A. Konstantinov
Article

Abstract

Kinetics of the reduction of the hemes in cytochrome c oxidase in the presence of high concentration of ruthenium(III)hexaammine chloride was examined using a stopped-flow spectrophotometer. Upon mixing of the oxidized enzyme with dithionite and Ru(NH3) 6 3+ , three well-resolved phases were observed: heme a reduction reaching completion within a few milliseconds is followed by two slow phases of heme a 3 reduction. The difference spectrum of heme a 3 reduction in the visible region is characterized by a maximum at ∼612 nm, rather than at 603 nm as was believed earlier. It is shown that in the case of bovine heart cytochrome c oxidase containing a special cation-binding site in which reversible binding of calcium ion occurs, heme a 3 reduction is slowed down by low concentrations of Ca2+. The effect is absent in the case of the bacterial cytochrome oxidase in which the cation-binding site contains a tightly bound Ca2+ ion. The data corroborate the inhibition of the cytochrome oxidase enzymatic activity by Ca2+ ions discovered earlier and indicate that the cation affects intramolecular electron transfer.

Key words

cytochrome c oxidase Ca2+ ions fast kinetics heme a3 

Abbreviations

CBS

cation-binding site

COX

cytochrome c oxidase

RuAm

hexaammineruthenium (Ru(NH3) 6 3+ )

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10541_2012_9635_MOESM1_ESM.pdf (150 kb)
Supplementary material, approximately 149 KB.

References

  1. 1.
    Ferguson-Miller, S., and Babcock, G. T. (1996) Chem. Rev., 7, 2889–2907.CrossRefGoogle Scholar
  2. 2.
    Belevich, I., and Verkhovsky, M. I. (2008) Antiox. Redox Signal., 10, 1–29.CrossRefGoogle Scholar
  3. 3.
    Yoshikawa, S., Muramoto, K., and Shinzawa-Itoh, K. (2011) Annu. Rev. Biophys., 40, 205–223.PubMedCrossRefGoogle Scholar
  4. 4.
    Tsukihara, T., Aoyama, H., Yamashita, E., Takashi, T., Yamaguichi, H., Shinzawa-Itoh, K., Nakashima, R., Yaono, R., and Yoshikawa, S. (1996) Science, 272, 1136–1144.PubMedCrossRefGoogle Scholar
  5. 5.
    Yoshikawa, S., Shinzawa-Itoh, K., Nakashima, R., Yaono, R., Inoue, N., Yao, M., Fei, M. J., Libeu, C. P., Mizushima, T., Yamaguchi, H., Tomizaki, T., and Tsukihara, T. (1998) Science, 280, 1723–1729.PubMedCrossRefGoogle Scholar
  6. 6.
    Ostermeier, C., Harrenga, A., Ermler, U., and Michel, H. (1997) Proc. Natl. Acad. Sci. USA, 94, 10547–10553.PubMedCrossRefGoogle Scholar
  7. 7.
    Pfitzner, U., Kirichenko, A., Konstantinov, A. A., Mertens, M., Wittershagen, A., Kolbesen, B. O., Steffens, G. C. M., Harrenga, A., Michel, H., and Ludwig, B. (1999) FEBS Lett., 456, 365–369.PubMedCrossRefGoogle Scholar
  8. 8.
    Lee, A., Kirichenko, A., Vygodina, T., Siletsky, S. A., Das, T. K., Rousseau, D. L., Gennis, R. A., and Konstantinov, A. A. (2002) Biochemistry, 41, 8886–8898.PubMedCrossRefGoogle Scholar
  9. 9.
    Kirichenko, A., Vygodina, T. V., Mkrtchyan, H. M., and Konstantinov, A. A. (1998) FEBS Lett., 423, 329–333.PubMedCrossRefGoogle Scholar
  10. 10.
    Kirichenko, A. V., Pfitzner, U., Ludwig, B., Soares, C. M., Vygodina, T. V., and Konstantinov, A. A. (2005) Biochemistry, 44, 12391–12401.PubMedCrossRefGoogle Scholar
  11. 11.
    Riistama, S., Laakkonen, L., Wikstrom, M., Verkhovsky, M. I., and Puustinen, A. (1999) Biochemistry, 38, 10670–10677.PubMedCrossRefGoogle Scholar
  12. 12.
    Wikstrom, M., and Saari, H. (1975) Biochim. Biophys. Acta, 408, 170–179.PubMedCrossRefGoogle Scholar
  13. 13.
    Saari, H., Pentilla, T., and Wikstrom, M. (1980) J. Bioenerg. Biomembr., 12, 325–338.PubMedCrossRefGoogle Scholar
  14. 14.
    Mkrtchyan, H., Vygodina, T., and Konstantinov, A. A. (1990) Biochem. Int., 20, 183–190.PubMedGoogle Scholar
  15. 15.
    Vygodina, T. V., Ptushenko, V. V., and Konstantinov, A. A. (2008) Biochim. Biophys. Acta, 1777, S110–S111.Google Scholar
  16. 16.
    Konstantinov, A. A. (2010) Biochim. Biophys. Acta, 1797 (Suppl.), 92.Google Scholar
  17. 17.
    Vygodina, T. V., and Konstantinov, A. A. (2010) Biochim. Biophys. Acta, 1797, 102.Google Scholar
  18. 18.
    Scott, R. A., and Gray, H. B. (1980) J. Am. Chem. Soc., 102, 3219–3224.CrossRefGoogle Scholar
  19. 19.
    Hochman, J. H., Partridge, B., and Ferguson-Miller, S. (1981) J. Biol. Chem., 256, 8693–8698.PubMedGoogle Scholar
  20. 20.
    Reichardt, J. K. V., and Gibson, Q. H. (1982) J. Biol. Chem., 257, 9268–9270.PubMedGoogle Scholar
  21. 21.
    Tsofina, L. M., Liberman, E. A., Vygodina, T. V., and Konstantinov, A. A. (1986) Biochem. Int., 12, 103–110.PubMedGoogle Scholar
  22. 22.
    Fowler, L. R., Richardson, S. H., and Hatefi, Y. (1962) Biochim. Biophys. Acta, 64, 170–173.PubMedCrossRefGoogle Scholar
  23. 23.
    Mitchell, D. M., and Gennis, R. B. (1995) FEBS Lett., 368, 148–150.PubMedCrossRefGoogle Scholar
  24. 24.
    Halaka, F. G., Babcock, G. T., and Dye, J. L. (1981) J. Biol. Chem., 256, 1084–1087.PubMedGoogle Scholar
  25. 25.
    Orii, Y. (2008) J. Bioenerg. Biomembr., 30, 47–53.CrossRefGoogle Scholar
  26. 26.
    Lambeth, D. O., Campbell, K. L., Zand, R., and Palmer, G. (1973) J. Biol. Chem., 248, 8130–8136.PubMedGoogle Scholar
  27. 27.
    Nilsson, T. (1992) Proc. Natl. Acad. Sci. USA, 89, 6497–6501.PubMedCrossRefGoogle Scholar
  28. 28.
    Zaslavsky, D., Kaulen, A., Smirnova, I. A., Vygodina, T. V., and Konstantinov, A. A. (1993) FEBS Lett., 336, 389–393.PubMedCrossRefGoogle Scholar
  29. 29.
    Jancura, D., Antalik, M., Berka, V., Palmer, G., and Fabian, M. (2006) J. Biol. Chem., 281, 20003–20010.PubMedCrossRefGoogle Scholar
  30. 30.
    Jancura, D., Berka, V., Antalik, M., Bagelova, J., Gennis, R. B., Palmer, G., and Fabian, M. (2006) J. Biol. Chem., 281, 30319–30325.PubMedCrossRefGoogle Scholar
  31. 31.
    Moody, A. J. (1996) Biochim. Biophys. Acta, 1276, 6–20.PubMedCrossRefGoogle Scholar
  32. 32.
    Wikstrom, M., Krab, K., and Saraste, M. (1981) Cytochrome Oxidase — a Synthesis, Academic Press, N. Y.Google Scholar
  33. 33.
    Zimmermann, B. H., Nitsche, C. I., Fee, J. A., Rusnak, F., and Munck, E. (1988) Proc. Natl. Acad. Sci. USA, 85, 5779–5783.PubMedCrossRefGoogle Scholar
  34. 34.
    Oertling, W. A., Surerus, K. K., Einarsdottir, O., Fee, J. A., Dyer, R. B., and Woodruff, W. H. (1994) Biochemistry, 33, 3128–3141.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • T. V. Vygodina
    • 1
    Email author
  • A. V. Dyuba
    • 1
  • A. A. Konstantinov
    • 1
  1. 1.Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations