Advertisement

Biochemistry (Moscow)

, Volume 77, Issue 8, pp 896–900 | Cite as

Domain motions of class I release factor induced by binding with class II release factor from Euplotes octocarinatus

  • Jie Chen
  • Bing-sheng Yang
  • Ai-hua LiangEmail author
Article
  • 67 Downloads

Abstract

The binding of both factors (eRF1 and eRF3) is essential for fast kinetics of the termination of protein translation. The C-terminal domain of eRF1 is known to interact with the C domain of eRF3. Eo-eRF1b contains two highly conserved tryptophan residues (W-11 and W-373), W-11 located in the Eo-eRF1b N domain and W-373 located in the EoeRF1b C domain. Fluorimetry was used to study the interactions of the proteins. When binding with Eo-eRF3Cm6, the emission peak of Eo-eRF1b is blue shifted, while the emission peak of Eo-eRF1bC has no notable change. Our results suggest that the eRF1-eRF3 interaction induces the N and C domain of eRF1b to become closer to each other.

Key words

steady-state fluorescence quenching eRF1-eRF3 interaction Euplotes octocarinatus 

Abbreviations

eRF1

class I polypeptide release factor in eukaryotes

eRF3

class II polypeptide release factor in eukaryotes

Eo-eRF1b

class I polypeptide release factor b in Euplotes octocarinatus

Eo-eRF1bN

N domain of Eo-eRF1b

Eo-eRF1bC

C domain of Eo-eRF1b

Eo-eRF3

class II polypeptide release factor in E. octocarinatus

Eo-eRF3Cm6

truncated peptide of Eo-eRF3 (a.a. 640–723)

Eo-eRF1b·Eo-eRF3Cm6

heterodimeric complex of Eo-eRF1b and Eo-eRF3Cm6

Eo-eRF1bC·Eo-eRF3Cm6

heterodimeric complex of Eo-eRF1bC and Eo-eRF3Cm6

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Frolova, L., Le Goff, X., Rasmussen, H. H., Cheperegin, S., Drugeon, G., Kress, M., Arman, I., Haenni, A. L., Celis, J. E., and Philippe, M. (1994) Nature, 372, 701–703.PubMedCrossRefGoogle Scholar
  2. 2.
    Song, H., Mugnier, P., Das, A. K., Webb, H. M., Evans, D. R., Tuite, M. F., Hemmings, B. A., and Barford, D. (2000) Cell, 100, 311–321.PubMedCrossRefGoogle Scholar
  3. 3.
    Kim, O. T., Yura, K., Go, N., and Harumoto, T. (2005) Gene, 346, 277–286.PubMedCrossRefGoogle Scholar
  4. 4.
    Kononenko, A. V., Dembo, K. A., Kiselev, L. L., and Volkov, V. V. (2004) Mol. Biol. (Moscow), 38, 303–311.CrossRefGoogle Scholar
  5. 5.
    Salas-Marco, J., Fan-Minogue, H., Kallmeyer, A. K., Klobutcher, L. A., Farabaugh, P. J., and Bedwell, D. M. (2006) Mol. Cell Biol., 26, 438–447.PubMedCrossRefGoogle Scholar
  6. 6.
    Korostelev, A., Zhu, J., Asahara, H., and Noller, H. F. (2010) EMBO J., 29, 2577–2585.PubMedCrossRefGoogle Scholar
  7. 7.
    Zavialov, A. V., Mora, L. R., Buckingham, H., and Ehrenberg, M. (2002) Mol. Cell, 10, 789–798.PubMedCrossRefGoogle Scholar
  8. 8.
    Ebihara, K., and Nakamura, Y. (1999) RNA, 5, 739–750.PubMedCrossRefGoogle Scholar
  9. 9.
    Eurwilaichitr, L., Graves, F. M., Stansfield, I., and Tuite, M. F. (1999) Mol. Microbiol., 32, 485–496.PubMedCrossRefGoogle Scholar
  10. 10.
    Ito, K., Ebihara, K., and Nakamura, Y. (1998) RNA, 4, 958–972.PubMedCrossRefGoogle Scholar
  11. 11.
    Merkulova, T. I., Frolova, L. Y., Lazar, M., Camonis, J., and Kisselev, L. L. (1999) FEBS Lett., 443, 41–47.PubMedCrossRefGoogle Scholar
  12. 12.
    Cheng, Z., Saito, K., Pisarev, A. V., Wada, M., Pisareva, V. P., Pestova, T. V., Gajda, M., Round, A., Kong, C., Lim, M., Nakamura, Y., Svergun, D. I., Ito, K., and Song, H. (2009) Genes Dev., 23, 1106–1118.PubMedCrossRefGoogle Scholar
  13. 13.
    Fan-Minogue, H., Du, M., Pisarev, A. V., Kallmeyer, A. K., Salas-Marco, J., Keeling, K. M., Thompson, S. R., Pestova, T. V., and Bedwell, D. M. (2008) Mol. Cell., 30, 599–609.PubMedCrossRefGoogle Scholar
  14. 14.
    Kononenko, A. V., Dembo, K. A., Kiselev, L. L., and Volkov, V. V. (2008) Proteins, 70, 388–393.PubMedCrossRefGoogle Scholar
  15. 15.
    Salas-Marco, J., and Bedwell, D. M. (2004) Mol. Cell Biol., 24, 7769–7778.PubMedCrossRefGoogle Scholar
  16. 16.
    Hatin, I., Fabret, C., Rousset, J. P., and Namy, O. (2009) Nucleic Acids Res., 37, 1789–1798.PubMedCrossRefGoogle Scholar
  17. 17.
    Liang, A., Brunen-Nieweler, C., Muramatsu, T., Kuchino, Y., Beier, H., and Heckmann, K. (2001) Gene, 262, 161–168.PubMedCrossRefGoogle Scholar
  18. 18.
    Song, L., Chai, B. F., Wang, W., and Liang, A. H. (2006) Res. Microbiol., 157, 842–850.PubMedCrossRefGoogle Scholar
  19. 19.
    Wang, Y., Chai, B. F., Wang, W., and Liang, A. H. (2010) Biosci. Rep., 30, 425–431.PubMedCrossRefGoogle Scholar
  20. 20.
    Chavatte, L., Seit-Nebi, A., Dubovaya, V., and Favre, A. (2002) EMBO J., 21, 5302–5311.PubMedCrossRefGoogle Scholar
  21. 21.
    Wang, W., Chai, B. F., Heckmann, K., and Liang, A. H. (2004) Biotechnol. Lett., 26, 959–963.PubMedCrossRefGoogle Scholar
  22. 22.
    Stobiecka, A. (2005) J. Photochem. Photobiol., 80, 9–18.CrossRefGoogle Scholar
  23. 23.
    Kwaambwa, H. M., and Maikokera, R. (2007) Colloids Surf. Biointerfaces, 60, 213–220.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Institute of BiotechnologyShanxi UniversityTaiyuanChina
  2. 2.Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of EducationShanxi UniversityTaiyuanChina

Personalised recommendations