Biochemistry (Moscow)

, Volume 77, Issue 8, pp 820–829 | Cite as

Serine proteases of small intestine mucosa — localization, functional properties, and physiological role

  • T. S. ZamolodchikovaEmail author


In this review we present data about small intestine serine proteases, which are a considerable part of the proteolytic apparatus in this major part of the gastrointestinal tract. Serine proteases of intestinal epitheliocytes, their structural-functional features, cellular localization, physiological substrates, and mechanisms of activity regulation are examined. Information about biochemical and functional properties of serine proteases is presented in a common context with morphological and physiological data, this being the basis for understanding the functional processes taking place in upper part of the intestine. Serine proteases play a key role in the physiology of the small intestine and provide the normal functioning of this organ as part of the digestive system in which hydrolysis and suction of food substances occur. They participate in renewal and remodeling of tissues, retractive activity of smooth musculature, hormonal regulation, and defense mechanisms of the intestine.

Key words

serine proteases small intestine digestive conveyor activation of zymogens tissue remodeling epithelium renewal 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lopez-Otin, C., and Overall, C. M. (2002) Nat. Rev. Mol. Cell Biol., 3, 509–519.PubMedCrossRefGoogle Scholar
  2. 2.
    Turk, B. (2006) Nat. Rev. Drug. Discov., 5, 785–799.PubMedCrossRefGoogle Scholar
  3. 3.
    Azarov, L. B., Baibeckov, I. M., Vyuchnova, Ye. S., et al. (1998) in Structure and Functions of Small Intestine Mucosa (Morozov, I. A., ed.) Tempus, Moscow, pp. 109–142.Google Scholar
  4. 4.
    Tekhver, Yu. T. (1974) Histology of Digestive Organs of Domestic Animals [in Russian], Pt. I, Agricultural Academy of Estonia Publishers.Google Scholar
  5. 5.
    Petit, A., Ernst, P. B., Befus, A. D., Clark, D. A., Rosenthal, K. L., Ishizaka, T., and Bienenstock, J. (1985) Eur. J. Immunol., 15, 211–215.PubMedCrossRefGoogle Scholar
  6. 6.
    Da Casta, L. R. (1972) W. Indian Med. J., 21, 66–69.Google Scholar
  7. 7.
    Krause, W. J. (2000) Prog. Histochem. Cytochem., 35, 259–367.PubMedCrossRefGoogle Scholar
  8. 8.
    Hooper, J. D., Clement, J. A., Quigley, J. P., and Antalis, T. M. (2001) J. Biol. Chem., 12, 857–860.CrossRefGoogle Scholar
  9. 9.
    Schechter, I., and Berger, A. (1967) Biochem. Biophys. Res. Commun., 20, 157–162.CrossRefGoogle Scholar
  10. 10.
    Netzel-Arnett, S., Hooper, J. D., Szabo, R., Madison, E. L., Quigley, J. P., Bugge, T. H., and Antalis, T. M. (2003) Cancer Metastasis Rev., 22, 237–258.PubMedCrossRefGoogle Scholar
  11. 11.
    List, K., Bugge, T. H., and Szabo, R. (2006) Mol. Med., 12, 1–7.PubMedCrossRefGoogle Scholar
  12. 12.
    Imamura, T., and Kitamoto, Y. (2003) Am. J. Physiol. Gastrointest. Liver Physiol., 285, G1235–G1241.PubMedGoogle Scholar
  13. 13.
    Shlygin, G. K. (1967) Enzymes of Intestine in Health and Pathology [in Russian], Meditsina, Leningrad.Google Scholar
  14. 14.
    Neurath, H., and Walsh, K. A. (1976) Proc. Natl. Acad. Sci. USA, 73, 3825–3832.PubMedCrossRefGoogle Scholar
  15. 15.
    Maroux, S., Baratti, J., and Desnuelle, P. J. (1971) Biol. Chem., 246, 5031–5039.Google Scholar
  16. 16.
    Nemoda, Z., and Sahin-Toth, M. (2005) J. Biol. Chem., 280, 29645–29652.PubMedCrossRefGoogle Scholar
  17. 17.
    Lu, D., Futterer, K., Korolev, S., Zheng, X., Tan, K., Waksman, G., and Sadler, J. E. (1999) J. Mol. Biol., 292, 361–373.PubMedCrossRefGoogle Scholar
  18. 18.
    Mikhailova, A. G., and Rumsh, L. D. (1999) FEBS Lett., 442, 226–230.PubMedCrossRefGoogle Scholar
  19. 19.
    Mikhailova, A. G., Likhareva, V. V., Prudchenko, I. A., and Rumsh, L. D. (2005) Biochemistry (Moscow), 70, 1129–1135.PubMedGoogle Scholar
  20. 20.
    Lu, D., Yuan, X., Zheng, X., and Sadler, J. E. (1997) J. Biol. Chem., 272, 31293–31300.PubMedCrossRefGoogle Scholar
  21. 21.
    Kitamoto, Y., Yuan, X., Wu, Q., McCourt, D. W., and Sadler, J. E. (1994) Proc. Natl. Acad. Sci. USA, 91, 7588–7592.PubMedCrossRefGoogle Scholar
  22. 22.
    Zamolodchikova, T. S., Sokolova, E. A., Lu, D., and Sadler, J. E. (2000) FEBS Lett., 466, 295–299.PubMedCrossRefGoogle Scholar
  23. 23.
    Kitamoto, Y., Veile, R. A., Donis-Keller, H., and Sadler, J. E. (1995) Biochemistry, 34, 4562–4568.PubMedCrossRefGoogle Scholar
  24. 24.
    Hadorn, B., Tarlow, M. J., Lloyd, J. K., and Wolff, O. H. (1969) Lancet, 1, 812–813.PubMedCrossRefGoogle Scholar
  25. 25.
    Holzinger, A., Maier, E. M., Buck, C., Mayerhofer, P. U., Kappler, M., Haworth, J. C., Moroz, S. P., Hadorn, H. B., Sadler, J. E., and Roscher, A. A. (2002) Am. J. Hum. Genet., 70, 20–25.PubMedCrossRefGoogle Scholar
  26. 26.
    Tsuzuki, S., Murai, N., Miyake, Y., Inouye, K., Hirayasu, H., Iwanaga, T., and Fushiki, T. (2005) Biochem. J., 388, 679–687.PubMedCrossRefGoogle Scholar
  27. 27.
    Kishi, K., Yamazaki, K., Yasuda, I., Yahagi, N., Ichinose, M., Tsuchiya, Y., Athauda, S. B., Inoue, H., and Takahashi, K. (2001) J. Biochem., 130, 425–430.PubMedCrossRefGoogle Scholar
  28. 28.
    Tsuchiya, Y., Takahashi, T., Sakurai, Y., Iwamatsu, A., and Takahashi, K. (1994) J. Biol. Chem., 269, 32985–32991.PubMedGoogle Scholar
  29. 29.
    Oberst, M. D., Williams, C. A., Dickson, R. B., Johnson, M. D., and Lin, C. Y. (2003) J. Biol. Chem., 278, 26773–26779.PubMedCrossRefGoogle Scholar
  30. 30.
    Lin, C. Y., Tseng, I. C., Chou, F. P., Su, S. F., Chen, Y. W., Johnson, M. D., and Dickson, R. B. (2008) Front. Biosci., 13, 621–635.PubMedCrossRefGoogle Scholar
  31. 31.
    Satomi, S., Yamasaki, Y., Tsuzuki, S., Hitomi, Y., Iwanaga, T., and Fushiki, T. (2001) Biochem. Biophys. Res. Commun., 287, 995–1002.PubMedCrossRefGoogle Scholar
  32. 32.
    Takeuchi, T., Harris, J. L., Huang, W., Yan, K. W., Coughlin, S. R., and Craik, C. S. (2000) J. Biol. Chem., 275, 26333–26342.PubMedCrossRefGoogle Scholar
  33. 33.
    Lu, X. G., Wu, X. G., Xu, X. H., Gong, X. B., Zhou, X., Xu, G. B., Zhu, L., and Zhao, X. Y. (2007) J. Zhejiang. Univ. Sci. B., 8, 570–574.PubMedCrossRefGoogle Scholar
  34. 34.
    Kume, K., Yamasaki, M., Tashiro, M., Yoshikawa, I., and Otsuki, M. (2007) Int. Med., 46, 1323–1329.CrossRefGoogle Scholar
  35. 35.
    De Jong, E., Porte, R. J., Knot, E. A., Verheijen, J. H., and Dees, J. (1989) Gut, 30, 188–194.PubMedCrossRefGoogle Scholar
  36. 36.
    Kurose, I., Miura, S., Suematsu, M., Serizawa, H., Fukumura, D., Asako, H., Hibi, T., and Tsuchiya, M. (1992) Dig. Dis. Sci., 37, 307–311.PubMedCrossRefGoogle Scholar
  37. 37.
    Tarlton, J. F., Whiting, C. V., Tunmore, D., Bregenholt, S., Reimann, J., Claesson, M. H., and Bland, P. W. (2000) Am. J. Pathol., 157, 1927–1935.PubMedCrossRefGoogle Scholar
  38. 38.
    Gibson, P. R., Birchall, I., Rosella, O., Albert, V., Finch, C. F., Barkla, D. H., and Young, G. P. (1998) Gut, 43, 656–663.PubMedCrossRefGoogle Scholar
  39. 39.
    Lijnen, H. R. (2001) Ann. N. Y. Acad. Sci., 936, 226–236.PubMedCrossRefGoogle Scholar
  40. 40.
    Stepanova, V. V., and Tkachuk, V. A. (2002) Biochemistry (Moscow), 67, 109–118.PubMedGoogle Scholar
  41. 41.
    Lijnen, H. R. (2002) Biochemistry (Moscow), 67, 92–98.PubMedGoogle Scholar
  42. 42.
    Dobrovolsky, A. B., and Titaeva, E. V. (2002) Biochemistry (Moscow), 67, 99–108.PubMedGoogle Scholar
  43. 43.
    Gold, L. I., Schwimmer, R., and Quigley, J. P. (1989) Biochem. J., 262, 529–534.PubMedGoogle Scholar
  44. 44.
    Cera, M. R., Fabbri, M., Molendini, C., Corada, M., Orsenigo, F., Rehberg, M., Reichel, C. A., Krombach, F., Pardi, R., and Dejana, E. (2009) J. Cell Sci., 122, 268–277.PubMedCrossRefGoogle Scholar
  45. 45.
    Van Buul, J. D., Kanters, E., and Hordijk, P. L. (2007) Arterioscler. Thromb. Vasc. Biol., 27, 1870–1876.PubMedCrossRefGoogle Scholar
  46. 46.
    Takada, A., and Takada, Y. (1988) Haemostasis, 18,Suppl. 1, 25–35.PubMedGoogle Scholar
  47. 47.
    Weinstein, M. J., and Doolittle, R. F. (2001) Biochim. Biophys. Acta, 258, 577–590.Google Scholar
  48. 48.
    Lijnen, H. R. (2001) Ann. N. Y. Acad. Sci., 936, 226–236.PubMedCrossRefGoogle Scholar
  49. 49.
    Poulsen, S. S., Nexo, E., Olsen, P. S., and Kirkegaard, P. (1985) Histochem. J., 17, 487–492.PubMedCrossRefGoogle Scholar
  50. 50.
    Nexo, E., Poulsen, S. S., Hansen, S. N., Kirkegaard, P., and Olsen, P. S. (1984) Gut, 25, 656–664.PubMedCrossRefGoogle Scholar
  51. 51.
    Kvist, N., Olsen, P. S., Poulsen, S. S., and Nexo, E. (1987) Digestion, 37, 223–227.PubMedCrossRefGoogle Scholar
  52. 52.
    Olsen, P. S., and Nexo, E. (1983) Scand. J. Gastroenterol., 18, 771–776.PubMedCrossRefGoogle Scholar
  53. 53.
    Fuller, P. J., Verity, K., Matheson, B. A., and Clements, J. A. (1989) Biochem. J., 264, 133–136.PubMedGoogle Scholar
  54. 54.
    Yousef, G. M., Scorilas, A., and Diamandis, E. P. (2000) Genomics, 63, 88–96.PubMedCrossRefGoogle Scholar
  55. 55.
    Petraki, C. D., Karavana, V. N., Skoufogiannis, P. T., Little, S. P., Howarth, D. J., Yousef, G. M., and Diamandis, E. P. (2001) J. Histochem. Cytochem., 49, 1431–1441.PubMedCrossRefGoogle Scholar
  56. 56.
    Schachter, M., Longridge, D. J., Wheeler, G. D., Mehta, J. G., and Uchida, Y. (1986) J. Histochem. Cytochem., 34, 927–934.PubMedCrossRefGoogle Scholar
  57. 57.
    Stadnicki, A. (2011) Inflamm. Bowel Dis., 17, 645–654.PubMedCrossRefGoogle Scholar
  58. 58.
    MacDonald, R. J., Margolius, H. S., and Erdos, E. G. (1988) Biochem. J., 253, 313–321.PubMedGoogle Scholar
  59. 59.
    Hofmann, W., and Geiger, R. (1983) Hoppe Seylers Z. Physiol. Chem., 364, 413–423.PubMedCrossRefGoogle Scholar
  60. 60.
    Bhoola, K. D., Figueroa, C. D., and Worthy, K. (1992) Pharmacol. Rev., 44, 1–80.PubMedGoogle Scholar
  61. 61.
    Fuller, P. J., and Funder, J. W. (1986) Kidney Int., 29, 953–964.PubMedCrossRefGoogle Scholar
  62. 62.
    Ward, P. E., Sheridan, M. A., Hammon, K. J., and Erdos, E. G. (1980) Biochem. Pharmacol., 29, 1525–1529.PubMedCrossRefGoogle Scholar
  63. 63.
    Koshikawa, N., Hasegawa, S., Nagashima, Y., Mitsuhashi, K., Tsubota, Y., Miyata, S., Miyagi, Y., Yasumitsu, H., and Miyazaki, K. (1998) Am. J. Pathol., 153, 937–944.PubMedCrossRefGoogle Scholar
  64. 64.
    Bohe, M., Borgstrom, A., Lindstrom, C., and Ohlsson, K. (1986) J. Clin. Pathol., 39, 786–793.PubMedCrossRefGoogle Scholar
  65. 65.
    Ghosh, D., Porter, E., Shen, B., Lee, S. K., Wilk, D., Drazba, J., Yadav, S. P., Crabb, J. W., Ganz, T., and Bevins, C. L. (2002) Nat. Immunol., 3, 583–590.PubMedCrossRefGoogle Scholar
  66. 66.
    Kunitz, M., and Northrop, J. H. (1934) Science, 80, 190.PubMedCrossRefGoogle Scholar
  67. 67.
    Kong, W., McConalogue, K., Khitin, L. M., Hollenberg, M. D., Payan, D. G., Bohm, S. K., and Bunnett, N. W. (1997) Proc. Natl. Acad. Sci. USA, 94, 8884–8889.PubMedCrossRefGoogle Scholar
  68. 68.
    Green, B. T., Bunnett, N. W., Kulkarni-Narla, A., Steinhoff, M., and Brown, D. R. (2000) J. Pharmacol. Exp. Ther., 295, 410–416.PubMedGoogle Scholar
  69. 69.
    Zamolodchikova, T. S., Sokolova, E. A., Alexandrov, S. L., Mikhaleva, I. I., Prudchenko, I. A., Morozov, I. A., Kononenko, N. V., Mirgorodskaya, O. A., Da, U., Larionova, N. I., Pozdnev, V. F., Ghosh, D., Duax, W. L., and Vorotyntseva, T. I. (1997) Eur. J. Biochem., 249, 612–621.PubMedCrossRefGoogle Scholar
  70. 70.
    Pemberton, A. D., Zamolodchikova, T. S., Scudamore, C. L., Chilvers, E. R., Miller, H. R., and Walker, T. R. (2002) Eur. J. Biochem., 269, 1171–1180.PubMedCrossRefGoogle Scholar
  71. 71.
    Pletnev, V. Z., Zamolodchikova, T. S., Pangborn, W. A., and Duax, W. L. (2000) Proteins, 41, 8–16.PubMedCrossRefGoogle Scholar
  72. 72.
    Zamolodchikova, T. S., Smirnova, E. V., Andrianov, A. N., Kashparov, I. V., Kotsareva, O. D., Sokolova, E. A., Ignatov, K. B., and Pemberton, A. D. (2005) Biochemistry (Moscow), 70, 672–684.PubMedGoogle Scholar
  73. 73.
    Zamolodchikova, T. S., Popykina, N. A., Gladysheva, I. P., and Larionova, N. I. (2009) Biochemistry (Moscow), 74, 824–833.PubMedGoogle Scholar
  74. 74.
    Gladysheva, I. P., Popykina, N. A., Zamolodchikova, T. S., and Larionova, N. I. (2001) Biochemistry (Moscow), 66, 682–687.PubMedGoogle Scholar
  75. 75.
    Makarova, A. M., Zamolodchikova, T. S., Rumsh, L. D., and Strukova, S. M. (2007) Russ. J. Bioorg. Chem., 33, 482–487.CrossRefGoogle Scholar
  76. 76.
    Kawabata, A., and Kuroda, R. (2000) Jpn. J. Pharmacol., 82, 171–174.PubMedCrossRefGoogle Scholar
  77. 77.
    Ramachandran, R., and Hollenberg, M. D. (2008) Br. J. Pharmacol., 153,Suppl. 1, S263–282.PubMedGoogle Scholar
  78. 78.
    MacNaughton, W. K. (2005) Mem. Inst. Oswaldo Cruz., 100,Suppl. 1, 211–215.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Shemyakin and Ovchinnikov Institute of Bioorganic ChemistryRussian Academy of SciencesMoscowRussia

Personalised recommendations