Biochemistry (Moscow)

, Volume 77, Issue 8, pp 799–812 | Cite as

The impact of genomics on research in diversity and evolution of archaea

  • A. V. Mardanov
  • N. V. RavinEmail author


Since the definition of archaea as a separate domain of life along with bacteria and eukaryotes, they have become one of the most interesting objects of modern microbiology, molecular biology, and biochemistry. Sequencing and analysis of archaeal genomes were especially important for studies on archaea because of a limited availability of genetic tools for the majority of these microorganisms and problems associated with their cultivation. Fifteen years since the publication of the first genome of an archaeon, more than one hundred complete genome sequences of representatives of different phylogenetic groups have been determined. Analysis of these genomes has expanded our knowledge of biology of archaea, their diversity and evolution, and allowed identification and characterization of new deep phylogenetic lineages of archaea. The development of genome technologies has allowed sequencing the genomes of uncultivated archaea directly from enrichment cultures, metagenomic samples, and even from single cells. Insights have been gained into the evolution of key biochemical processes in archaea, such as cell division and DNA replication, the role of horizontal gene transfer in the evolution of archaea, and new relationships between archaea and eukaryotes have been revealed.

Key words

archaea genome evolution sequencing phylogeny gene systematics DNA replication horizontal gene transfer 



fluorescent in situ hybridization


thousand nucleotide pairs


million nucleotide pairs


ribosomal RNA


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Woese, C. R., and Fox, G. E. (1977) Proc. Natl. Acad. Sci. USA, 74, 5088–5090.PubMedCrossRefGoogle Scholar
  2. 2.
    Schleper, C., Puehler, G., Holz, I., Gambacorta, A., Janekovic, D., Santarius, U., Klenk, H. P., and Zillig, W. (1995) J. Bacteriol., 177, 7050–7059.PubMedGoogle Scholar
  3. 3.
    Li, Y., Mandelco, L., and Wiegel, J. (1993) Int. J. Syst. Bacteriol., 43, 450–460.CrossRefGoogle Scholar
  4. 4.
    Blochl, E., Rachel, R., Burggraf, S., Hafenbradl, D., Jannasch, H. W., and Stetter, K. O. (1997) Extremophiles, 1, 14–21.PubMedCrossRefGoogle Scholar
  5. 5.
    Kashefi, K., and Lovely, D. R. (2003) Science, 301, 934.PubMedCrossRefGoogle Scholar
  6. 6.
    Bintrim, S. B., Donohue, T. J., Handelsman, J., Roberts, G. P., and Goodman, R. M. (1997) Proc. Natl. Acad. Sci. USA, 94, 277–282.PubMedCrossRefGoogle Scholar
  7. 7.
    Ochsenreiter, T., Selezi, D., Quaiser, A., Bonch-Osmolovskaya, L., and Schleper, C. (2003) Environ. Microbiol., 5, 787–797.PubMedCrossRefGoogle Scholar
  8. 8.
    Galand, P. E., Fritze, H., Conrad, R., and Yrjala, K. (2005) Appl. Environ. Microbiol., 71, 2195–2198.PubMedCrossRefGoogle Scholar
  9. 9.
    DeLong, E. F. (1992) Proc. Natl. Acad. Sci. USA, 89, 5685–5689.PubMedCrossRefGoogle Scholar
  10. 10.
    Fuhrman, J. A., McCallum, K., and Davis, A. A. (1992) Nature, 356, 148–149.PubMedCrossRefGoogle Scholar
  11. 11.
    Boetius, A., Ravenschlag, K., Schubert, C. J., Rickert, D., Widdel, F., Gieseke, A., Amann, R., Jorgensen, B. B., Witte, U., and Pfannkuche, O. (2000) Nature, 407, 623–626.PubMedCrossRefGoogle Scholar
  12. 12.
    Orphan, V. J., House, C. H., Hinrichs, K. U., McKeegan, K. D., and DeLong, E. F. (2001) Science, 293, 484–487.PubMedCrossRefGoogle Scholar
  13. 13.
    Mills, H. J., Martinez, R. J., Story, S., and Sobecky, P. A. (2005) Appl. Environ. Microbiol., 71, 3235–3247.PubMedCrossRefGoogle Scholar
  14. 14.
    MacGregor, B. J., Moser, D. P., Alm, E. W., Nealson, K. H., and Stahl, D. A. (1997) Appl. Environ. Microbiol., 63, 1178–1181.PubMedGoogle Scholar
  15. 15.
    Keough, B. P., Schmidt, T. M., and Hicks, R. E. (2003) Microb. Ecol., 46, 238–248.PubMedCrossRefGoogle Scholar
  16. 16.
    Takai, K., Moser, D. P., DeFlaun, M., Onstott, T. C., and Fredrickson, J. K. (2001) Appl. Environ. Microbiol., 67, 5750–5760.PubMedCrossRefGoogle Scholar
  17. 17.
    Lepp, P. W., Brinig, M. M., Ouverney, C. C., Palm, K., Armitage, G. C., and Relman, D. A. (2004) Proc. Natl. Acad. Sci. USA, 101, 6176–6181.PubMedCrossRefGoogle Scholar
  18. 18.
    Karner, M. B., DeLong, E. F., and Karl, D. M. (2001) Nature, 409, 507–510.PubMedCrossRefGoogle Scholar
  19. 19.
    Konneke, M., Bernhard, A. E., de la Torre, J. R., Walker, C. B., Waterbury, J. B., and Stahl, D. A. (2005) Nature, 437, 543–546.PubMedCrossRefGoogle Scholar
  20. 20.
    Leininger, S., Urich, T., Schloter, M., Schwark, L., Qi, J., Nicol, G. W., Prosser, J. I., Schuster, S. C., and Schleper, C. (2006) Nature, 442, 806–809.PubMedCrossRefGoogle Scholar
  21. 21.
    Bult, C. J., White, O., Olsen, G. J., Zhou, L., Fleischmann, R. D., Sutton, G. G., Blake, J. A., FitzGerald, L. M., Clayton, R. A., Gocayne, J. D., Kerlavage, A. R., Dougherty, B. A., Tomb, J. F., Adams, M. D., Reich, C. I., Overbeek, R., Kirkness, E. F., Weinstock, K. G., Merrick, J. M., Glodek, A., Scott, J. L., Geoghagen, N. S., and Venter, J. C. (1996) Science, 273, 1058–1073.PubMedCrossRefGoogle Scholar
  22. 22.
    Elkins, J. G., Podar, M., Graham, D. E., Makarova, K. S., Wolf, Y., Randau, L., Hedlund, B. P., Brochier-Armanet, C., Kunin, V., Anderson, I., Lapidus, A., Goltsman, E., Barry, K., Koonin, E. V., Hugenholtz, P., Kyrpides, N., Wanner, G., Richardson, P., Keller, M., and Stetter, K. O. (2008) Proc. Natl. Acad. Sci. USA, 105, 8102–8107.PubMedCrossRefGoogle Scholar
  23. 23.
    Hallam, S. J., Konstantinidis, K. T., Putnam, N., Schleper, C., Watanabe, Y., Sugahara, J., Preston, C., de la Torre, J., Richardson, P. M., and DeLong, E. F. (2006) Proc. Natl. Acad. Sci. USA, 103, 18296–18301.PubMedCrossRefGoogle Scholar
  24. 24.
    Nunoura, T., Takaki, Y., Kakuta, J., Nishi, S., Sugahara, J., Kazama, H., Chee, G. J., Hattori, M., Kanai, A., Atomi, H., Takai, K., and Takami, H. (2011) Nucleic Acids Res., 39, 3204–3223.PubMedCrossRefGoogle Scholar
  25. 25.
    Baker, B. J., Comolli, L. R., Dick, G. J., Hauser, L. J., Hyatt, D., Dill, B. D., Land, M. L., Verberkmoes, N. C., Hettich, R. L., and Banfield, J. F. (2010) Proc. Natl. Acad. Sci. USA, 107, 8806–8811.PubMedCrossRefGoogle Scholar
  26. 26.
    Meyerdierks, A., Kube, M., Kostadinov, I., Teeling, H., Glockner, F. O., Reinhardt, R., and Amann, R. (2010) Environ. Microbiol., 12, 422–439.PubMedCrossRefGoogle Scholar
  27. 27.
    Blainey, P. C., Mosier, A. C., Potanina, A., Francis, C. A., and Quake, S. R. (2011) PLoS One, 6, e16626.PubMedCrossRefGoogle Scholar
  28. 28.
    Gribaldo, S., and Brochier-Armanet, C. (2006) Philos. Trans. R. Soc. Lond. B. Biol. Sci., 361, 1007–1022.PubMedCrossRefGoogle Scholar
  29. 29.
    Bonch-Osmolovskaya, E. A., and Ravin, N. V. (2010) Vestn. Ros. Akad. Nauk, 80, 977–984.Google Scholar
  30. 30.
    Matsunaga, F., Forterre, P., Ishmo, Y., and Myllykallio, H. (2001) Proc. Natl. Acad. Sci. USA, 98, 11152–11157.PubMedCrossRefGoogle Scholar
  31. 31.
    Myllykallio, H., Lopez, P., Lopez-Garcia, P., Heilig, R., Saurin, W., Zivanovic, Y., Philippe, H., and Forterre, P. (2000) Science, 288, 2212–2215.PubMedCrossRefGoogle Scholar
  32. 32.
    Robinson, N. P., Dionne, I., Lundgren, M., Marsh, V. L., Bernander, R., and Bell, S. D. (2004) Cell, 116, 25–38.PubMedCrossRefGoogle Scholar
  33. 33.
    Robinson, N. P., and Bell, S. D. (2007) Proc. Natl. Acad. Sci. USA, 104, 5806–5811.PubMedCrossRefGoogle Scholar
  34. 34.
    Forterre, P. (2002) Curr. Opin. Microbiol., 5, 525–532.PubMedCrossRefGoogle Scholar
  35. 35.
    Kjems, J., and Garrett, R. A. (1988) Cell, 54, 693–703.PubMedCrossRefGoogle Scholar
  36. 36.
    Kjems, J., Leffers, H., Olesen, T., and Garrett, R. A. (1989) J. Biol. Chem., 264, 17834–17837.PubMedGoogle Scholar
  37. 37.
    Watanabe, Y., Yokobori, S., and Kawarabayasi, Y. (2002) Tanpakushitsu Kakusan Koso, 47, 833–836.PubMedGoogle Scholar
  38. 38.
    She, Q., Singh, R. K., Confalonieri, F., Zivanovic, Y., Allard, G., Awayez, M. J., Chan-Wei her, C. C., Clausen, I. G., Curtis, B. A., De Moors, A., Erauso, G., Fletcher, C., Gordon, P. M., Heikamp-de Jong, I., Jeffries, A. C., Kozera, C. J., Medina, N., Peng, X., Thi-Ngoc, H. P., Redder, P., Schenk, M. E., Thenault, C., Tolstrup, N., Charlebois, R. L., Doolittle, W. F., Duguet, M. T., Gaasterland, R. A., Garrett, M. A., Ragan, C. W., Sensen, C. W., and van der Oost, J. (2001) Proc. Natl. Acad. Sci. USA, 98, 7835–7840.PubMedCrossRefGoogle Scholar
  39. 39.
    Chen, L., Brugger, K., Skovgaard, M., Redder, P., She, Q., Torarinsson, E., Greve, B., Awayez, M., Zibat, A., Klenk, H. P., and Garrett, R. A. (2005) J. Bacteriol., 187, 4992–4999.PubMedCrossRefGoogle Scholar
  40. 40.
    Jansen, R., Embden, J. D., Gaastra, W., and Schouls, L. M. (2002) Mol. Microbiol., 43, 1565–1575.PubMedCrossRefGoogle Scholar
  41. 41.
    Mojica, F. J., Diez-Villasenor, C., Garcia-Martinez, J., and Soria, E. (2005) Mol. Evol., 60, 174–182.CrossRefGoogle Scholar
  42. 42.
    Lillestol, R. K., Redder, P., Garrett, R. A., and Brugger, K. (2006) Archaea, 2, 59–72.PubMedCrossRefGoogle Scholar
  43. 43.
    Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., Romero, D. A., and Horvath, P. (2007) Science, 315, 1709–1712.PubMedCrossRefGoogle Scholar
  44. 44.
    Marraffini, L. A., and Sontheimer, E. J. (2010) Nat. Rev. Genet., 11, 181–190.PubMedCrossRefGoogle Scholar
  45. 45.
    Winker, S., and Woese, C. R. (1991) Syst. Appl. Microbiol., 14, 305–310.PubMedCrossRefGoogle Scholar
  46. 46.
    Barns, S. M., Delwiche, C. F., Palmer, J. D., and Pace, N. R. (1996) Proc. Natl. Acad. Sci. USA, 93, 9188–9193.PubMedCrossRefGoogle Scholar
  47. 47.
    Takai, K., and Horikoshi, K. (1999) Genetics, 152, 1285–1297.PubMedGoogle Scholar
  48. 48.
    Brochier-Armanet, C., Boussau, B., Gribaldo, S., and Forterre, P. (2008) Nat. Rev. Microbiol., 6, 245–252.PubMedCrossRefGoogle Scholar
  49. 49.
    Walker, C. B., de la Torre, J. R., Klotz, M. G., Urakawa, H., Pinel, N., Arp, D. J., Brochier-Armanet, C., Chain, P. S., Chan, P. P., Gollabgir, A., Hemp, J., Hugler, M., Karr, E. A., Konneke, M., Shin, M., Lawton, T. J., Lowe, T., Martens-Habbena, W., Sayavedra-Soto, L. A., Lang, D., Sievert, S. M., Rosenzweig, A. C., Manning, G., and Stahl, D.A. (2010) Proc. Natl. Acad. Sci. USA, 107, 8818–8823.PubMedCrossRefGoogle Scholar
  50. 50.
    Spang, A., Hatzenpichler, R., Brochier-Armanet, C., Rattei, T., Tischler, P., Spieck, E., Streit, W., Stahl, D. A., Wagner, M., and Schleper, C. (2010) Trends Microbiol., 18, 331–340.PubMedCrossRefGoogle Scholar
  51. 51.
    Woese, C. R., Kandler, O., and Wheelis, M. L. (1990) Proc. Natl. Acad. Sci. USA, 87, 4576–4579.PubMedCrossRefGoogle Scholar
  52. 52.
    Brock, T. D., Brock, K. M., Belly, R. T., and Weiss, R. L. (1972) Arch. Microbiol., 84, 54–68.Google Scholar
  53. 53.
    Kletzin, A. (2007) in Archaea: Molecular and Cellular Biology (Cavicchioli R., ed.) ASM Press Washington, USA, pp. 14–93.Google Scholar
  54. 54.
    Stetter, K. O. (1996) FEMS Microbiol. Rev., 18, 149–158.CrossRefGoogle Scholar
  55. 55.
    Bonch-Osmolovskaya, E. A. (1994) FEMS Microbiol. Rev., 15, 65–77.CrossRefGoogle Scholar
  56. 56.
    Mardanov, A. V., Gumerov, V. M., Beletsky, A. V., Prokofeva, M. I., Bonch-Osmolovskaya, E. A., Ravin, N. V., and Skryabin, K. G. (2011) J. Bacteriol., 193, 3156–3157.PubMedCrossRefGoogle Scholar
  57. 57.
    Siebers, B., Zaparty, M., Raddatz, G., Tjaden, B., Albers, S. V., Bell, S. D., Blombach, F., Kletzin, A., Kyrpides, N., Lanz, C., Plagens, A., Rampp, M., Rosinus, A., von Jan, M., Makarova, K. S., Klenk, H. P., Schuster, S. C., and Hensel, R. (2011) PLoS One, 6, e24222.PubMedCrossRefGoogle Scholar
  58. 58.
    Selig, M., and Schonheit, P. (1994) Arch. Microbiol., 162, 286–294.CrossRefGoogle Scholar
  59. 59.
    Fitz-Gibbon, S. T., Ladner, H., Kim, U. J., Stetter, K. O., Simon, M. I., and Miller, J. H. (2002) Proc. Natl. Acad. Sci. USA, 99, 984–989.PubMedCrossRefGoogle Scholar
  60. 60.
    Mardanov, A. V., Gumerov, V. M., Slobodkina, G. B., Beletsky, A. V., Bonch-Osmolovskaya, E. A., Ravin, N. V., and Skryabin, K. G. (2012) J. Bacteriol., 194, 727–728.PubMedCrossRefGoogle Scholar
  61. 61.
    Cozen, A. E., Weirauch, M. T., Pollard, K. S., Bernick, D. L., Stuart, J. M., and Lowe, T. M. (2009) J. Bact., 191, 782–794.PubMedCrossRefGoogle Scholar
  62. 62.
    Kawarabayasi, Y., Hino, Y., Horikawa, H., Yamazaki, S., Haikawa, Y., Jin-no, K., Takahashi, M., Sekine, M., Baba, S., Ankai, A., Kosugi, H., Hosoyama, A., Fukui, S., Nagai, Y., Nishijima, K., Nakazawa, H., Takamiya, M., Masuda, S., Funahashi, T., Tanaka, T., Kudoh, Y., Yamazaki, J., Kushida, N., Oguchi, A., Aoki, K., Kubota, K., Nakamura, Y., Nomura, N., Sako, Y., and Kikuchi, H. (1999) DNA Res., 6, 83–101.PubMedCrossRefGoogle Scholar
  63. 63.
    Ravin, N. V., Mardanov, A. V., Beletsky, A. V., Kublanov, I. V., Kolganova, T. V., Lebedinsky, A. V., Chernyh, N. A., Bonch-Osmolovskaya, E. A., and Skryabin, K. G. (2009) J. Bacteriol., 191, 2371–2379.PubMedCrossRefGoogle Scholar
  64. 64.
    Anderson, I. J., Dharmarajan, L., Rodriguez, J., Hooper, S., Porat, I., Ulrich, L. E., Elkins, J. G., Mavromatis, K., Sun, H., Land, M., Lapidus, A., Lucas, S., Barry, K., Huber, H., Zhulin, I. B., Whitman, W. B., Mukhopadhyay, B., Woese, C., Bristow, J., and Kyrpides, N. (2009) BMC Genomics, 10, 145.PubMedCrossRefGoogle Scholar
  65. 65.
    Paper, W., Jahn, U., Hohn, M. J., Kronner, M., Nather, D. J., Burghardt, T., Rachel, R., Stetter, K. O., and Huber, H. (2007) Int. J. Syst. Evol. Microbiol., 57, 803–808.PubMedCrossRefGoogle Scholar
  66. 66.
    Podar, M., Anderson, I., Makarova, K. S., Elkins, J. G., Ivanova, N., Wall, M. A., Lykidis, A., Mavromatis, K., Sun, H., Hudson, M. E., Chen, W., Deciu, C., Hutchison, D., Eads, J. R., Anderson, A., Fernandes, F., Szeto, E., Lapidus, A., Kyrpides, N. C., Saier, M. H., Jr., Richardson, P. M., Rachel, R., Huber, H., Eisen, J. A., Koonin, E. V., Keller, M., and Stetter, K. O. (2008) Genome Biol., 9, R158.PubMedCrossRefGoogle Scholar
  67. 67.
    Prokofeva, M. I., Kostrikina, N. A., Kolganova, T. V., Tourova, T. P., Lysenko, A. M., Lebedinsky, A. V., and Bonch-Osmolovskaya, E. A. (2009) Int. J. Syst. Evol. Microbiol., 59, 3116–3122.PubMedCrossRefGoogle Scholar
  68. 68.
    Mardanov, A. V., Svetlitchnyi, V. A., Beletsky, A. V., Prokofeva, M. I., Bonch-Osmolovskaya, E. A., Ravin, N. V., and Skryabin, K. G. (2010) Appl. Environ. Microbiol., 76, 5652–5657.PubMedCrossRefGoogle Scholar
  69. 69.
    Brochier-Armanet, C., Forterre, P., and Gribaldo, S. (2011) Curr. Opin. Microbiol., 14, 274–281.PubMedCrossRefGoogle Scholar
  70. 70.
    Perevalova, A. A., Bidzhieva, S., Kublanov, I. V., Hinrichs, K. U., Liu, X. L., Mardanov, A. V., Lebedinsky, A. V., and Bonch-Osmolovskaya, E. A. (2010) Int. J. Syst. Evol. Microbiol., 60, 2082–2088.PubMedCrossRefGoogle Scholar
  71. 71.
    Bertoldo, C., and Antranikian, G. (2006) in The Prokaryotes, 3rd Edn (M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer, and E. Stackebrandt, eds.) Springer-Verlag, New York, Vol. 3, pp. 69–81.CrossRefGoogle Scholar
  72. 72.
    Klenk, H. P., Clayton, R. A., Tomb, J. F., White, O., Nelson, K. E., Ketchum, K. A., Dodson, R. J., Gwinn, M., Hickey, E. K., Peterson, J. D., Richardson, D. L., Kerlavage, A. R., Graham, D. E., Kyrpides, N. C., Fleischmann, R. D., Quackenbush, J., Lee, N. H., Sutton, G. G., Gill, S., Kirkness, E. F., Dougherty, B. A., McKenney, K., Adams, M. D., Loftus, B., Peterson, S., Reich, C. I., McNeil, L. K., Badger, J. H., Glodek, A., Zhou, L., Overbeek, R., Gocayne, J. D., Weidman, J. F., McDonald, L., Utterback, T., Cotton, M. D., Spriggs, T., Artiach, P., Kaine, B. P., Sykes, S. M., Sadow, P. W., D’Andrea, K. P., Bowman, C., Fujii, C., Garland, S. A., Mason, T. M., Olsen, G. J., Fraser, C. M., Smith, H. O., Woese, C. R., and Venter, J. C. (1997) Nature, 390, 364–370.PubMedCrossRefGoogle Scholar
  73. 73.
    Gumerov, V. M., Mardanov, A. V., Beletsky, A. V., Prokofeva, M. I., Bonch-Osmolovskaya, E. A., Ravin, N. V., and Skryabin, K. G. (2011) J. Bacteriol., 193, 2355–2356.PubMedCrossRefGoogle Scholar
  74. 74.
    Kurr, M., Huber, R., Konig, H., Jannasch, H. W., Fricke, H., Trincone, A., Krstjansson, J. K., and Stetter, K. O. (1991) Arch. Microbiol., 156, 239–247.CrossRefGoogle Scholar
  75. 75.
    Oren, A. (2006) in The Prokaryotes (Dworkin, M., ed.) Springer, 3, 113–164.Google Scholar
  76. 76.
    Sayeh, R., Birrien, J. L., Alain, K., Barbier, G., Hamdi, M., and Prieur, D. (2010) Extremophiles, 14, 501–514.PubMedCrossRefGoogle Scholar
  77. 77.
    Golyshina, O. V., Pivovarova, T. A., Karavaiko, G. I., Kondrat’eva, T. F., Moore, E. R. B., Abraham, W. R., Lunsdorf, H., Timmis, K. N., Yakimov, M. M., and Golyshin, P. N. (2000) Int. J. Syst. Evol. Microbiol., 50, 997–1006.PubMedCrossRefGoogle Scholar
  78. 78.
    Sorensen, K. B., and Teske, A. (2006) Appl. Environ. Microbiol., 72, 4596–4603.PubMedCrossRefGoogle Scholar
  79. 79.
    Teske, A., and Sorensen, K. B. (2008) ISME J., 2, 3–18.PubMedCrossRefGoogle Scholar
  80. 80.
    Schleper, C. (2007) Archaea: Evolution, Physiology, and Molecular Biology (Garrett, R., and Hans-Peter Klenk, H.-P., eds.) Blackwell Publishing Ltd.Google Scholar
  81. 81.
    Reigstad, L. J., Jorgensen, S. L., and Schleper, C. (2010) ISME J., 4, 346–356.PubMedCrossRefGoogle Scholar
  82. 82.
    Gumerov, V. M., Mardanov, A. V., Beletsky, A. V., Bonch-Osmolovskaya, E. A., and Ravin, N. V. (2011) Mikrobiologiya, 80, 258–265.Google Scholar
  83. 83.
    Nunoura, T., Hirayama, H., Takami, H., Oida, H., Nishi, S., Shimamura, S., Suzuki, Y., Inagaki, F., Takai, K., Nealson, K. H., and Horikoshi, K. (2005) Environ. Microbiol., 7, 1967–1984.PubMedCrossRefGoogle Scholar
  84. 84.
    Kim, B. K., Jung, M. Y., Yu, D. S., Park, S. J., Oh, T. K., Rhee, S. K., and Kim, J. F. (2011) J. Bacteriol., 193, 5539–5540.PubMedCrossRefGoogle Scholar
  85. 85.
    Konneke, M., Bernhard, A. E., de la Torre, J. R., Walker, C. B., Waterbury, J. B., and Stahl, D. A. (2005) Nature, 437, 543–546.PubMedCrossRefGoogle Scholar
  86. 86.
    Schleper, C., and Nicol, G. W. (2010) Adv. Microb. Physiol., 57, 1–41.PubMedCrossRefGoogle Scholar
  87. 87.
    Wuchter, C., Abbas, B., Coolen, M. J., Herfort, L., van Bleijswijk, J., Timmers, P., Strous, M., Teira, E., Herndl, G. J., Middelburg, J. J., Schouten, S., and Sinninghe Damste, J. S. (2006) Proc. Natl. Acad. Sci. USA, 103, 12317–12322.PubMedCrossRefGoogle Scholar
  88. 88.
    Hallam, S. J., Putnam, N., Preston, C. M., Detter, J. C., Rokhsar, D., Richardson, P. M., and DeLong, E. F. (2004) Science, 305, 1457–1462.PubMedCrossRefGoogle Scholar
  89. 89.
    Reysenbach, A.-L., Liu, Y., Banta, A. B., Beveridge, T. J., Kirshtein, J. D., Schouten, S., Tivey, M. K., von Damm, K. L., and Voytek, M. A. (2006) Nature, 442, 444–447.PubMedCrossRefGoogle Scholar
  90. 90.
    Reysenbach, A. L., and Flores, G. E. (2008) Geobiology, 6, 331–336.PubMedCrossRefGoogle Scholar
  91. 91.
    Huber, H., Hohn, M. J., Rachel, R., Fuchs, T., Wimmer, V. C., and Stetter, K. O. (2002) Nature, 417, 63–67.PubMedCrossRefGoogle Scholar
  92. 92.
    Hohn, M. J., Hedlund, B. P., and Huber, H. (2002) Syst. Appl. Microbiol., 25, 551–554.PubMedCrossRefGoogle Scholar
  93. 93.
    McCliment, E. A., Voglesonger, K. M., O’Day, P. A., Dunn, E. E., Holloway, J. R., and Cary, S. C. (2006) Environ. Microbiol., 8, 114–125.PubMedCrossRefGoogle Scholar
  94. 94.
    Casanueva, A., Galada, N., Baker, G. C., Grant, W. D., Heaphy, S., Jones, B., Yanhe, M., Ventosa, A., Blamey, J., and Cowan, D. A. (2008) Extremophiles, 12, 651–656.PubMedCrossRefGoogle Scholar
  95. 95.
    Waters, E., Hohn, M. J., Ahel, I., Graham, D. E., Adams, M. D., Barnstead, M., Beeson, K. Y., Bibbs, L., Bolanos, R., Keller, M., Kretz, K., Lin, X., Mathur, E., Ni, J., Podar, M., Richardson, T., Sutton, G. G., Simon, M., Soil, D., Stetter, K. O., Short, J. M., and Noordewier, M. (2003) Proc. Natl. Acad. Sci. USA, 100, 12984–12988.PubMedCrossRefGoogle Scholar
  96. 96.
    Di Giulio, M. (2007) Gene, 401, 108–113.PubMedCrossRefGoogle Scholar
  97. 97.
    Makarova, K. S., and Koonin, E. V. (2005) Curr. Opin. Microbiol., 117, 52–67.Google Scholar
  98. 98.
    Brochier, C., Forterre, P., and Gribaldo, S. (2005) BMC Evol. Biol., 5, 36.PubMedCrossRefGoogle Scholar
  99. 99.
    Forterre, P., Gribaldo, S., and Brochier-Armanet, C. (2009) J. Biol., 8, 7.PubMedCrossRefGoogle Scholar
  100. 100.
    Fujishima, K., Sugahara, J., Kikuta, K., Hirano, R., Sato, A., Tomita, M., and Kanai, A. (2009) Proc. Natl. Acad. Sci. USA, 106, 2683–2687.PubMedCrossRefGoogle Scholar
  101. 101.
    Baker, B. J., Tyson, G. W., Webb, R. I., Flanagan, J., Hugenholtz, P., Allen, E. E., and Banfield, J. F. (2006) Science, 314, 1933–1935.PubMedCrossRefGoogle Scholar
  102. 102.
    Narasingarao, P., Podell, S., Ugalde, J. A., Brochier-Armanet, C., Emerson, J. B., Brocks, J. J., Heidelberg, K. B., Banfield, J. F., and Allen, E. E. (2012) ISME J., 6, 81–93.PubMedCrossRefGoogle Scholar
  103. 103.
    Cohen, G. N., Barbe, V., Flament, D., Galperin, M., Heilig, R., Lecompte, O., Poch, O., Prieur, D., Querellou, J., Ripp, R., Thierry, J. C., van der Oost, J., Weissenbach, J., Zivanovic, Y., and Forterre, P. (2003) Mol. Microbiol., 47, 1495–1512.PubMedCrossRefGoogle Scholar
  104. 104.
    Kawarabayasi, Y., Sawada, M., Horikawa, H., Haikawa, Y., Hino, Y., Yamamoto, S., Sekine, M., Baba, S., Kosugi, H., Hosoyama, A., Nagai, Y., Sakai, M., Ogura, K., Otsuka, R., Nakazawa, H., Takamiya, M., Ohfuku, Y., Funahashi, T., Tanaka, T., Kudoh, Y., Yamazaki, J., Kushida, N., Oguchi, A., Aoki, K., and Kikuchi, H. (1998) DNA Res., 5, 147–155.PubMedCrossRefGoogle Scholar
  105. 105.
    Zivanovic, Y., Lopez, P., Philippe, H., and Forterre, P. (2002) Nucleic Acids Res., 30, 1902–1910.PubMedCrossRefGoogle Scholar
  106. 106.
    Brugger, K., Torarinsson, E., Redder, P., Chen, L., and Garrett, R. A. (2004) Biochem. Soc. Trans., 32, 179–183.PubMedCrossRefGoogle Scholar
  107. 107.
    Robb, F. T., Maeder, D. L., Brown, J. R., DiRuggiero, J., Stump, M. D., Yeh, R. K., Weiss, R. B., and Dunn, D. M. (2001) Methods Enzymol., 330, 134–157.PubMedCrossRefGoogle Scholar
  108. 108.
    Lake, J. A., Henderson, E., Oakes, M., and Clark, M. W. (1984) Proc. Natl. Acad. Sci. USA, 81, 3786–3790.PubMedCrossRefGoogle Scholar
  109. 109.
    Makarova, K. S., Aravind, L., Galperin, M. Y., Grishin, N. V., Tatusov, R. L., Wolf, Y. I., and Koonin, E. V. (1999) Genome Res., 9, 608–628.PubMedGoogle Scholar
  110. 110.
    Galagan, J. E., Nusbaum, C., Roy, A., Endrizzi, M. G., Macdonald, P., FitzHugh, W., Calvo, S., Engels, R., Smirnov, S., Atnoor, D., Brown, A., Allen, N., Naylor, J., Stange-Thomann, N., DeArellano, K., Johnson, R., Linton, L., McEwan, P., McKernan, K., Talamas, J., Tirrell, A., Ye, W., Zimmer, A., Barber, R. D., Cann, I., Graham, D. E., Grahame, D. A., Guss, A. M., Hedderich, R., Ingram-Smith, C., Kuettner, H. C., Krzycki, J. A., Leigh, J. A., Li, W., Liu, J., Mukhopadhyay, B., Reeve, J. N., Smith, K., Springer, T. A., Umayam, L. A., White, O., White, R. H., Conway de Macario, E., Ferry, J. G., Jarrell, K. F., Jing, H., Macario, A. J., Paulsen, I., Pritchett, M., Sowers, K. R., Swanson, R. V., Zinder, S. H., Lander, E., Metcalf, W. W., and Birren, B. (2002) Genome Res., 12, 532–542.PubMedCrossRefGoogle Scholar
  111. 111.
    Diruggiero, J., Dunn, D., Maeder, D. L., Holley-Shanks, R., Chatard, J., Horlacher, R., Robb, F. T., Boos, W., and Weiss, R. B. (2000) Mol. Microbiol., 38, 684–693.PubMedCrossRefGoogle Scholar
  112. 112.
    Mardanov, A. V., Ravin, N. V., Svetlitchnyi, V. A., Beletsky, A. V., Miroshnichenko, M. L., Bonch-Osmolovskaya, E. A., and Skryabin, K. G. (2009) Appl. Environ. Microbiol., 75, 4580–4588.PubMedCrossRefGoogle Scholar
  113. 113.
    Futterer, O., Angelov, A., Liesegang, H., Gottschalk, G., Schleper, C., Schepers, B., Dock, C., Antranikian, G., and Liebl, W. (2004) Proc. Natl. Acad. Sci. USA, 101, 9091–9096.PubMedCrossRefGoogle Scholar
  114. 114.
    Ruepp, A., Graml, W., Santos-Martinez, M. L., Koretke, K. K., Volker, C., Mewes, H. W., Frishman, D., Stocker, S., Lupas, A. N., and Baumeister, W. (2000) Nature, 407, 508–513.PubMedCrossRefGoogle Scholar
  115. 115.
    Pina, M., Bize, A., Forterre, P., and Prangishvili, D. (2011) FEMS Microbiol. Rev., 35, 1035–1054.PubMedCrossRefGoogle Scholar
  116. 116.
    Haring, M., Peng, X., Brugger, K., Rachel, R., Stetter, K. O., Garrett, R. A., and Prangishvili, D. (2004) Virology, 323, 233–242.PubMedCrossRefGoogle Scholar
  117. 117.
    Cortez, D., Forterre, P., and Gribaldo, S. (2009) Genome Biol., 10, 65.CrossRefGoogle Scholar
  118. 118.
    Lindas, A. C., Karlsson, E. A., Lindgren, M. T., Ettema, T. J., and Bernander, R. (2008) Proc. Natl. Acad. Sci. USA, 105, 18942–18946.PubMedCrossRefGoogle Scholar
  119. 119.
    Csuros, M., and Miklos, I. (2009) Mol. Biol. Evol., 26, 2087–2095.PubMedCrossRefGoogle Scholar
  120. 120.
    Leigh, J. A., Albers, S. V., Atomi, H., and Allers, T. (2011) FEMS Microbiol. Rev., 35, 577–608.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Laboratory of Molecular Cloning, Centre “Bioengineering”Russian Academy of SciencesMoscowRussia

Personalised recommendations