Advertisement

Biochemistry (Moscow)

, Volume 77, Issue 7, pp 793–794 | Cite as

Longevity and mitochondrial membrane potential

  • D. A. Knorre
  • F. F. SeverinEmail author
Mini-Review

Abstract

In Saccharomyces cerevisiae yeast cells a decrease in the mitochondrial membrane potential caused by protonophores or by a loss of mitochondrial DNA leads to an increase in longevity (replicative life span). The loss of mitochondrial DNA also activates retrograde signaling that results in certain changes in transcription. Recently, Miceli and coauthors ((2011) Front. Genet., 2, 102) showed that retrograde response is triggered by a drop in the membrane potential. Independently, it has been shown that retrograde response activates autophagic mitochondrial degradation (mitophagy). Together, it suggests that activation of selective mitophagy increases lifespan by protecting cells from accumulation of damaged mitochondria in cells. Low concentrations of protonophores can be beneficial by increasing the accuracy of the mitophagosomal degradation of mitochondria with deleterious mutations in their DNA.

Key words

yeast mitochondria mitophagy retrograde signaling aging 

References

  1. 1.
    Barros, M. H., Bandy, B., Tahara, E. B., and Kowaltowski, A. J. (2004) J. Biol. Chem., 279, 49883–49888.PubMedCrossRefGoogle Scholar
  2. 2.
    Tainter, M. L. (1938) J. Pharmacol. Exp. Ter., 63, 51–57.Google Scholar
  3. 3.
    Caldeira da Silva, C. C., Cerqueira, F. M., Barbosa, L. F., Medeiros, M. H., and Kowaltowski, A. J. (2008) Aging Cell, 7, 552–560.PubMedCrossRefGoogle Scholar
  4. 4.
    Korshunov, S. S., Skulachev, V. P., and Starkov, A. A. (1997) FEBS Lett., 416, 15–18.PubMedCrossRefGoogle Scholar
  5. 5.
    Pozniakovsky, A. I., Knorre, D. A., Markova, O. V., Hyman, A. A., Skulachev, V. P., and Severin, F. F. (2005) J. Cell Biol., 168, 257–269.PubMedCrossRefGoogle Scholar
  6. 6.
    Miceli, M. V., Jiang, J. C., Tiwari, A., Rodriguez-Quinones, J. F., and Jazwinski, S. M. (2011) Front Genet., 2, 102.PubMedGoogle Scholar
  7. 7.
    Liu, Z., and Butow, R. A. (2006) Annu. Rev. Genet., 40, 159–185.PubMedCrossRefGoogle Scholar
  8. 8.
    Journo, D., Mor, A., and Abeliovich, H. (2009) J. Biol. Chem., 284, 35885–35895.PubMedCrossRefGoogle Scholar
  9. 9.
    Biswas, G., Guha, M., and Avadhani, N. G. (2005) Gene, 354, 132–139.PubMedCrossRefGoogle Scholar
  10. 10.
    Ichas, F., Jouaville, L. S., and Mazat, J. P. (1997) Cell, 89, 1145–1153.PubMedCrossRefGoogle Scholar
  11. 11.
    Jin, S. M., Lazarou, M., Wang, C., Kane, L. A., Narendra, D. P., and Youle, R. J. (2010) J. Cell. Biol., 191, 933–942.PubMedCrossRefGoogle Scholar
  12. 12.
    Severin, F. F., Severina, I. I., Antonenko, Y. N., Rokitskaya, T. I., Cherepanov, D. A., Mokhova, E. N., Vyssokikh, M. Y., Pustovidko, A. V., Markova, O. V., Yaguzhinsky, L. S., Korshunova, G. A., Sumbatyan, N. V., Skulachev, M. V., and Skulachev, V. P. (2010) Proc. Natl. Acad. Sci. USA, 107, 663–668.PubMedCrossRefGoogle Scholar
  13. 13.
    Skulachev, V. P. (2012) Biochemistry (Moscow), 77, 689–706.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations