What is “phenoptosis” and how to fight it?
- 251 Downloads
- 43 Citations
Abstract
Phenoptosis is the death of an organism programmed by its genome. Numerous examples of phenoptosis are described in prokaryotes, unicellular eukaryotes, and all kingdoms of multicellular eukaryotes (animals, plants, and fungi). There are very demonstrative cases of acute phenoptosis when actuation of a specific biochemical or behavioral program results in immediate death. Rapid (taking days) senescence of semelparous plants is described as phenoptosis controlled by already known genes and mediated by toxic phytohormones like abscisic acid. In soya, the death signal is transmitted from beans to leaves via xylem, inducing leaf fall and death of the plant. Mutations in two genes of Arabidopsis thaliana, required for the flowering and subsequent formation of seeds, prevent senescence, strongly prolonging the lifespan of this small semelparous grass that becomes a big bush with woody stem, and initiate substitution of vegetative for sexual reproduction. The death of pacific salmon immediately after spawning is surely programmed. In this case, numerous typical traits of aging, including amyloid plaques in the brain, appear on the time scale of days. There are some indications that slow aging of higher animals and humans is also programmed, being the final step of ontogenesis. It is assumed that stepwise decline of many physiological functions during such aging increases pressure of natural selection on organisms stimulating in this way biological evolution. As a working hypothesis, the biochemical mechanism of slow aging is proposed. It is assumed that mitochondria-generated reactive oxygen species (ROS) is a tool to stimulate apoptosis, an effect decreasing with age the cell number (cellularity) of organs and tissues. A group of SkQ-type substances composed of plastoquinone and a penetrating cation were synthesized to target an antioxidant into mitochondria and to prevent the age-linked rise of the mitochondrial ROS level. Such targeting is due to the fact that mitochondria are the only cellular organelles that are negatively charged compared to the cytosol. SkQs are shown to strongly decrease concentration of ROS in mitochondria, prolong lifespan of fungi, invertebrates, fish, and mammals, and retard appearance of numerous traits of aging. Clinical trials of SkQ1 (plastoquinonyl decyltriphenylphosphonium) have been successfully completed so that the Ministry of Health of the Russian Federation recommends drops of very dilute (0.25 μM) solution of this antioxidant as a medicine to treat the syndrome of dry eye, which was previously considered an incurable disease developing with age. These drops are already available in drugstores. Thus, SkQ1 is the first mitochondria-targeted drug employed in medical practice.
Key words
evolution phenoptosis programmed aging mitochondria antioxidants therapy of dry eye syndromeAbbreviations
- Δψ
transmembrane difference of electric potentials
- BLM
bilayer planar phospholipid membrane
- C12TPP
dodecyltriphenylphosphonium
- MitoQ
ubiquinonyl decyltriphenylphosphonium
- ROS
reactive oxygen species
- SkQ
derivatives of plastoquinone and penetrating cations (Sk+)
- SkQ1
plastoquinonyl decyltriphenylphosphonium
- SkQR1
plastoquinonyl decylrhodamine 19
Preview
Unable to display preview. Download preview PDF.
Supplementary material
References
- 1.Skulachev, V. P., and Ozrina, R. D. (2011) Biochemistry (Moscow), 76, 1–2.Google Scholar
- 2.Skulachev, V. P. (1997) Biochemistry (Moscow), 62, 1191–1195.Google Scholar
- 3.Skulachev, V. P. (1999) Biochemistry (Moscow), 64, 1418–1426.Google Scholar
- 4.Longo, V. D., Mitteldorf, J., and Skulachev, V. P. (2005) Nat. Rev. Genet., 6, 866–872.PubMedGoogle Scholar
- 5.Libertini, G. (2012) Biochemistry (Moscow), 77, 707–715.Google Scholar
- 6.Koonin, E. V., and Aravind, L. (2002) Cell Death Differ., 9, 394–404.PubMedGoogle Scholar
- 7.Lewis, K. (2000) Microbiol. Mol. Biol. Rev., 64, 503–514.PubMedGoogle Scholar
- 8.Skulachev, V. P. (2003) in Model Systems in Aging (Nystrom, T., and Osiewacz, H. D., eds.) Springer-Verlag, Berlin-Heidelberg, pp. 191–238.Google Scholar
- 9.Severin, F. F., and Hyman, A. A. (2002) Curr. Biol., 12, R233–R235.PubMedGoogle Scholar
- 10.Pozniakovsky, A. I., Knorre, D. A., Markova, O. V., Hyman, A. A., Skulachev, V. P., and Severin, F. F. (2005) J. Cell Biol., 168, 257–269.PubMedGoogle Scholar
- 11.Skulachev, V. P. (2002) Ann. N.Y. Acad. Sci., 959, 214–237.PubMedGoogle Scholar
- 12.Severin, F. F., and Skulachev, V. P. (2009) Advances Gerontol. (Russ.), 22, 37–48.Google Scholar
- 13.Skulachev, V. P. (2009) Rus. Chem. J. (Russ.), LIII, 125–140.Google Scholar
- 14.Sukhanova, E. I., Rogov, A. G., Severin, F. F., and Zvyagilskaya, R. A. (2012) Biochemistry (Moscow), 77, 761–775.Google Scholar
- 15.Nooden, L. D., Guiamet, J. J., and John, I. (1997) Physiol. Plant., 101, 746–753.Google Scholar
- 16.Leopold, A. C., Niedergangkamien, E., and Janick, J. (1959) Plant Physiol., 34, 570–573.PubMedGoogle Scholar
- 17.Lindoo, S. J., and Nooden, L. D. (1977) Plant Physiol., 59, 1136–1140.PubMedGoogle Scholar
- 18.Nooden, L. D., and Murray, B. J. (1982) Plant Physiol., 69, 754–756.PubMedGoogle Scholar
- 19.Skulachev, V. P. (2011) Aging (Albany, N.Y.), 3, 1120–1123.Google Scholar
- 20.Kirkwood, T. B. L., and Melov, S. (2011) Curr. Biol., 21, R701–R707.PubMedGoogle Scholar
- 21.Cutler, S. R., Rodriguez, P. L., Finkelstein, R. R., and Abrams, S. R. (2010) Ann. Rev. Plant Biol., 61, 651–679.Google Scholar
- 22.Cho, D., Shin, D. J., Jeon, B. W., and Kwak, J. M. (2009) J. Plant Biol., 52, 102–113.Google Scholar
- 23.Melzer, S., Lens, F., Gennen, J., Vanneste, S., Rohde, A., and Beeckman, T. (2008) Nature Genet., 40, 1489–1492.PubMedGoogle Scholar
- 24.Weismann, A. (1889) Essays upon Heredity and Kindred Biological Problems, Clarendon Press, Oxford.Google Scholar
- 25.Carlquist, S. J. (1974) Island Biology, Columbia University Press, New York.Google Scholar
- 26.Groover, A. T. (2005) Trends Plant Sci., 10, 210–214.PubMedGoogle Scholar
- 27.Kim, S. C., Crawford, D. J., FranciscoOrtega, J., and SantosGuerra, A. (1996) PNAS, 93, 7743–7748.PubMedGoogle Scholar
- 28.Bohle, U. R., Hilger, H. H., and Martin, W. F. (1996) PNAS, 93, 11740–11745.PubMedGoogle Scholar
- 29.Libbert, A. (1976) Physiology of Plants [Russian translation], Mir, Moscow.Google Scholar
- 30.Wodinsky, J. (1977) Science, 198, 948–951.PubMedGoogle Scholar
- 31.Nesis, K. N. (1997) in Russian Science: to Persevere and Be Reborn (Byalko, A. V., ed.) [in Russian], Fizmatizdat, Moscow, pp. 358–365.Google Scholar
- 32.Dawkins, R. (1976) The Selfish Gene, Oxford University Press, New York.Google Scholar
- 33.Bradley, A. J., McDonald, I. R., and Lee, A. K. (1980) General Comparat. Endocrinol., 40, 188–200.Google Scholar
- 34.Skulachev, V. P. (2005) Vestnik RAN (Russ.), 75, 831–843.Google Scholar
- 35.Austad, S. N. (2004) Aging Cell, 3, 249–251.PubMedGoogle Scholar
- 36.Maldonado, T. A., Jones, R. E., and Norris, D. O. (2000) Brain Res., 858, 237–251.PubMedGoogle Scholar
- 37.Maldonado, T. A., Jones, R. E., and Norris, D. O. (2002) J. Neurobiol., 53, 11–20.PubMedGoogle Scholar
- 38.Maldonado, T. A., Jones, R. E., and Norris, D. O. (2002) J. Neurobiol., 53, 21–35.PubMedGoogle Scholar
- 39.Kipling, D., Davis, T., Ostler, E. L., and Faragher, R. G. A. (2004) Science, 305, 1426–1431.PubMedGoogle Scholar
- 40.Terzibasi, E., Valenzano, D. R., and Cellerino, A. (2007) Exp. Gerontol., 42, 81–89.PubMedGoogle Scholar
- 41.Comfort, A. (1979) The Biology of Senescence, Elsevier, New York.Google Scholar
- 42.Schopenhauer, A. (1993) The World as Will and Representation [Russian translation], Moskovskii Klub, Moscow.Google Scholar
- 43.Darwin, C. (1871) The Descent of Man, and Selection in Relation to Sex, D. Appleton and Company, New York.Google Scholar
- 44.Medawar, P. B. (1952) An Unsolved Problem of Biology, Published for the College by H. K. Lewis, London.Google Scholar
- 44a.Bowles, J. T. (1998) Med. Hypotheses, 51, 179–221.PubMedGoogle Scholar
- 44b.Bowles, J. T. (2000) Med. Hypotheses, 54, 236–339.Google Scholar
- 45.Loison, A., Festa-Bianchet, M., Gaillard, J. M., Jorgenson, J. T., and Jullien, J. M. (1999) Ecology, 80, 2539–2554.Google Scholar
- 46.Bonduriansky, R., and Brassil, C. E. (2002) Nature, 420, 377–377.PubMedGoogle Scholar
- 47.Gavrilova, N. S., Gavrilov, L. A., Severin, F. F., and Skulachev, V. P. (2012) Biochemistry (Moscow), 77, 754–760.Google Scholar
- 48.Khokhlov, A. N. (2009) Ros. Khim. Zh., LIII, 111–117.Google Scholar
- 49.Vreeland, R. H., Rosenzweig, W. D., and Powers, D. W. (2000) Nature, 407, 897–900.PubMedGoogle Scholar
- 50.George, J. C., Bada, J., Zeh, J., Scott, L., Brown, S. E., O’Hara, T., and Suydam, R. (1999) Canad. J. Zool., 77, 571–580.Google Scholar
- 51.Buffenstein, R. (2005) J. Gerontol. A. Biol. Sci. Med. Sci., 60, 1369–1377.PubMedGoogle Scholar
- 52.Dawkins, R. (1989) in Artificial Life Proceedings Reading (Langton, C., ed.) Addison Wesley, Massachusetts, pp. 201–220.Google Scholar
- 53.Kirschner, M., and Gerhart, J. (1998) PNAS, 95, 8420–8427.PubMedGoogle Scholar
- 54.Skulachev, V. P., Bogachev, A. V., and Kasparinsky, F. O. (2010) Membrane Bioenergetics [in Russian], Moscow University Publishers, Moscow.Google Scholar
- 55.Mufazalov, I. A., Penkov, D. N., Chernyak, B. V., Pletyushkina, O. Yu., Vyssokih, M. Yu., Kirpichnikov, M. P., Dolgikh, D. A., Kruglov, A. A., Kuprash, D. V., Skulachev, V. P., and Nedospasov, S. A. (2009) Mol. Biol. (Moscow), 43, 648–656.Google Scholar
- 56.Sharonov, G. V., Feofanov, A. V., Bocharova, O. V., Astapova, M. V., Dedukhova, V. I., Chernyak, B. V., Dolgikh, D. A., Arseniev, A. S., Skulachev, V. P., and Kirpichnikov, M. P. (2005) Apoptosis, 10, 797–808.PubMedGoogle Scholar
- 57.Mott, J. L., Zhang, D., Freeman, J. C., Mikolajczak, P., Chang, S. W., and Zassenhaus, H. P. (2004) Biochem. Biophys. Res. Commun., 319, 1210–1215.PubMedGoogle Scholar
- 58.Trifunovic, A., Wredenberg, A., Falkenberg, M., Spelbrink, J. N., Rovio, A. T., Bruder, C. E., Bohlooly, Y. M., Gidlof, S., Oldfors, A., Wibom, R., Tornell, J., Jacobs, H. T., and Larsson, N. G. (2004) Nature, 429, 417–423.PubMedGoogle Scholar
- 59.Kujoth, G. C., Hiona, A., Pugh, T. D., Someya, S., Panzer, K., Wohlgemuth, S. E., Hofer, T., Seo, A. Y., Sullivan, R., Jobling, W. A., Morrow, J. D., van Remmen, H., Sedivy, J. M., Yamasoba, T., Tanokura, M., Weindruch, R., Leeuwenburgh, C., and Prolla, T. A. (2005) Science, 309, 481–484.PubMedGoogle Scholar
- 60.Harman, D. (1956) J. Gerontol., 11, 298–300.PubMedGoogle Scholar
- 61.Emanuel, N. M. (1975) Izv. AN SSSR, 785–794.Google Scholar
- 62.Szilard, L. (1959) PNAS, 45, 30–45.PubMedGoogle Scholar
- 63.Skulachev, V. P., and Longo V. D. (2005) Ann. N. Y. Acad. Sci., 1057, 145–164.PubMedGoogle Scholar
- 63a.Szczesny, B., Tann, A. W., and Mitra, S. (2010) Mech. Ageing Develop., 131, 330–337.Google Scholar
- 64.Brunet-Rossinni, A. K., and Austad, S. N. (2004) Biogerontology, 5, 211–222.PubMedGoogle Scholar
- 65.Ku, H. H., Brunk, U. T., and Sohal, R. S. (1993) Free Radic. Biol. Med., 15, 621–627.PubMedGoogle Scholar
- 66.Barja, G. (1998) Ann. N. Y. Acad. Sci., 854, 224–238.PubMedGoogle Scholar
- 67.Barja, G., and Herrero, A. (2000) FASEB J., 14, 312–318.PubMedGoogle Scholar
- 68.Lambert, A. J., Boysen, H. M., Buckingham, J. A., Yang, T., Podlutsky, A., Austad, S. N., Kunz, T. H., Buffenstein, R., and Brand, M. D. (2007) Aging Cell, 6, 607–618.PubMedGoogle Scholar
- 69.Dilman, V. M. (1978) Mech. Ageing Dev., 8, 153–173.PubMedGoogle Scholar
- 70.Dilman, V. M. (1982) Large Biological Clock [in Russian], Znaniye, Moscow.Google Scholar
- 71.Longo, V. D., and Finch, C. E. (2003) Science, 299, 1342–1346.PubMedGoogle Scholar
- 72.Kim, E. B., Fang, X. D., Fushan, A. A., Huang, Z. Y., Lobanov, A. V., Han, L. J., Marino, S. M., Sun, X. Q., Turanov, A. A., Yang, P. C., Yim, S. H., Zhao, X., Kasaikina, M. V., Stoletzki, N., Peng, C. F., Polak, P., Xiong, Z. Q., Kiezun, A., Zhu, Y. B., Chen, Y. X., Kryukov, G. V., Zhang, Q., Peshkin, L., Yang, L., Bronson, R. T., Buffenstein, R., Wang, B., Han, C. L., Li, Q. Y., Chen, L., Zhao, W., Sunyaev, S. R., Park, T. J., Zhang, G. J., Wang, J., and Gladyshev, V. N. (2011) Nature, 479, 223–227.PubMedGoogle Scholar
- 73.Liberman, E. A., Topaly, V. P., Tsofina, L. M., Jasaitis, A. A., and Skulachev, V. P. (1969) Nature, 222, 1076–1078.PubMedGoogle Scholar
- 74.Green, D. E. (1974) Biochim. Biophys. Acta, 346, 27–78.PubMedGoogle Scholar
- 75.Liberman, E. A., and Skulachev, V. P. (1970) Biochim. Biophys. Acta, 216, 30–42.PubMedGoogle Scholar
- 76.Severin, S. Ye., Skulachev, V. P., and Yaguzhinsky, L. S. (1970) Biokhimiya, 35, 1250–1257.Google Scholar
- 77.Burns, R. J., Smith, R. A., and Murphy, M. P. (1995) Arch. Biochem. Biophys., 322, 60–68.PubMedGoogle Scholar
- 78.Smith, R. A., Porteous, C. M., Coulter, C. V., and Murphy, M. P. (1999) Eur. J. Biochem., 263, 709–716.PubMedGoogle Scholar
- 79.Kelso, G. F., Porteous, C. M., Coulter, C. V., Hughes, G., Porteous, W. K., Ledgerwood, E. C., Smith, R. A., and Murphy, M. P. (2001) J. Biol. Chem., 276, 4588–4596.PubMedGoogle Scholar
- 80.Murphy, M. P., and Smith, R. A. (2007) Annu. Rev. Pharmacol. Toxicol., 47, 629–656.PubMedGoogle Scholar
- 81.Antonenko, Y. N., Avetisyan, A. V., Bakeeva, L. E., Chernyak, B. V., Chertkov, V. A., Domnina, L. V., Ivanova, O. Y., Izyumov, D. S., Khailova, L. S., Klishin, S. S., Korshunova, G. A., Lyamzaev, K. G., Muntyan, M. S., Nepryakhina, O. K., Pashkovskaya, A. A., Pletjushkina, O. Y., Pustovidko, A. V., Roginsky, V. A., Rokitskaya, T. I., Ruuge, E. K., Saprunova, V. B., Severina, I. I., Simonyan, R. A., Skulachev, I. V., Skulachev, M. V., Sumbatyan, N. V., Sviryaeva, I. V., Tashlitsky, V. N., Vassiliev, J. M., Vyssokikh, M. Y., Yaguzhinsky, L. S., Zamyatnin, A. A., Jr., and Skulachev, V. P. (2008) Biochemistry (Moscow), 73, 1273–1287.Google Scholar
- 82.Skulachev, V. P., Anisimov, V. N., Antonenko, Y. N., Bakeeva, L. E., Chernyak, B. V., Erichev, V. P., Filenko, O. F., Kalinina, N. I., Kapelko, V. I., Kolosova, N. G., Kopnin, B. P., Korshunova, G. A., Lichinitser, M. R., Obukhova, L. A., Pasyukova, E. G., Pisarenko, O. I., Roginsky, V. A., Ruuge, E. K., Senin, I. I., Severina, I. I., Skulachev, M. V., Spivak, I. M., Tashlitsky, V. N., Tkachuk, V. A., Vyssokikh, M. Y., Yaguzhinsky, L. S., and Zorov, D. B. (2009) Biochim. Biophys. Acta, 1787, 437–461.PubMedGoogle Scholar
- 83.James, A. M., Cocheme, H. M., Smith, R. A., and Murphy, M. P. (2005) J. Biol. Chem., 280, 21295–21312.PubMedGoogle Scholar
- 84.O’Malley, Y., Fink, B. D., Ross, N. C., Prisinzano, T. E., and Sivitz, W. I. (2006) J. Biol. Chem., 281, 39766–39775.PubMedGoogle Scholar
- 85.Doughan, A. K., and Dikalov, S. I. (2007) Antioxid. Redox. Signal., 9, 1825–1836.PubMedGoogle Scholar
- 86.Kruk, J., Jemiola-Rzeminska, M., and Strzalka, K. (1997) Chem. Phys. Lipids, 87, 73–80.Google Scholar
- 87.Roginsky, V., Barsukova, T., Loshadkin, D., and Pliss, E. (2003) Chem. Phys. Lipids, 125, 49–58.PubMedGoogle Scholar
- 88.Skulachev, V. P. (2007) Biochemistry (Moscow), 72, 1385–1396.Google Scholar
- 88a.Fink, B. D., Herlein, J. A., Yorek, M. A., Fenner, A. M., Kerns, R. J., and Sivitz, W. I. (2012) J. Pharm. Exp. Therap., DOI: 10.1124/jpet.112.195586.Google Scholar
- 89.Skulachev, V. P., Antonenko, Y. N., Cherepanov, D. A., Chernyak, B. V., Izyumov, D. S., Khailova, L. S., Klishin, S. S., Korshunova, G. A., Lyamzaev, K. G., Pletjushkina, O. Y., Roginsky, V. A., Rokitskaya, T. I., Severin, F. F., Severina, I. I., Simonyan, R. A., Skulachev, M. V., Sumbatyan, N. V., Sukhanova, E. I., Tashlitsky, V. N., Trendeleva, T. A., Vyssokikh, M. Y., and Zvyagilskaya, R. A. (2010) Biochim. Biophys. Acta, 1797, 878–889.PubMedGoogle Scholar
- 90.Roginsky, V. A., Tashlitsky, V. N., and Skulachev, V. P. (2009) Aging (Albany, NY), 1, 481–489.Google Scholar
- 91.Skulachev, M. V., Antonenko, Y. N., Anisimov, V. N., Chernyak, B. V., Cherepanov, D. A., Chistyakov, V. A., Egorov, M. V., Kolosova, N. G., Korshunova, G. A., Lyamzaev, K. G., Plotnikov, E. Y., Roginsky, V. A., Savchenko, A. Y., Severina, I. I., Severin, F. F., Shkurat, T. P., Tashlitsky, V. N., Shidlovsky, K. M., Vyssokikh, M. Y., Zamyatnin, A. A., Zorov, D. B., and Skulachev, V. P. (2011) Curr. Drug Targets, 12, 800–826.PubMedGoogle Scholar
- 92.Severin, F. F., Severina, I. I., Antonenko, Y. N., Rokitskaya, T. I., Cherepanov, D. A., Mokhova, E. N., Vyssokikh, M. Y., Pustovidko, A. V., Markova, O. V., Yaguzhinsky, L. S., Korshunova, G. A., Sumbatyan, N. V., Skulachev, M. V., and Skulachev, V. P. (2010) PNAS, 107, 663–668.PubMedGoogle Scholar
- 93.Anisimov, V. N., Egorov, M. V., Krasilshchikova, M. S., Lyamzaev, K. G., Manskikh, V. N., Moshkin, M. P., Novikov, E. A., Popovich, I. G., Rogovin, K. A., Shabalina, I. G., Shekarova, O. N., Skulachev, M. V., Titova, T. V., Vygodin, V. A., Vyssokikh, M. Y., Yurova, M. N., Zabezhinsky, M. A., and Skulachev, V. P. (2011) Aging (Albany NY), 3, 1110–1119.Google Scholar
- 94.Anisimov, V. N., Bakeeva, L. E., Egormin, P. A., Filenko, O. F., Isakova, E. F., Manskikh, V. N., Mikhelson, V. M., Panteleeva, A. A., Pasyukova, E. G., Pilipenko, D. I., Piskunova, T. S., Popovich, I. G., Roshchina, N. V., Rybina, O. Y., Saprunova, V. B., Samoylova, T. A., Semenchenko, A. V., Skulachev, M. V., Spivak, I. M., Tsybul’ko, E. A., Tyndyk, M. L., Vyssokikh, M. Y., Yurova, M. N., Zabezhinsky, M. A., and Skulachev, V. P. (2008) Biochemistry (Moscow), 73, 1329–1342.Google Scholar
- 95.Stefanova, N. A., Fursova, A., and Kolosova, N. G. (2010) J. Alzheimer’s Dis., 21, 479–491.Google Scholar
- 96.Skulachev, V. P. (2012) J. Alzheimer’s Dis., 28, 283–289.Google Scholar
- 97.Neroev, V. V., Archipova, M. M., Bakeeva, L. E., Fursova, A., Grigorian, E. N., Grishanova, A. Y., Iomdina, E. N., Ivashchenko, Zh. N., Katargina, L. A., Khoroshilova-Maslova, I. P., Kilina, O. V., Kolosova, N. G., Kopenkin, E. P., Korshunov, S. S., Kovaleva, N. A., Novikova, Y. P., Philippov, P. P., Pilipenko, D. I., Robustova, O. V., Saprunova, V. B., Senin, I. I., Skulachev, M. V., Sotnikova, L. F., Stefanova, N. A., Tikhomirova, N. K., Tsapenko, I. V., Shchipanova, A. I., Zinovkin, R. A., and Skulachev, V. P. (2008) Biochemistry (Moscow), 73, 1317–1328.Google Scholar
- 98.Bakeeva, L. E., Barskov, I. V., Egorov, M. V., Isaev, N. K., Kapelko, V. I., Kazachenko, A. V., Kirpatovsky, V. I., Kozlovsky, S. V., Lakomkin, V. L., Levina, S. B., Pisarenko, O. I., Plotnikov, E. Y., Saprunova, V. B., Serebryakova, L. I., Skulachev, M. V., Stelmashook, E. V., Studneva, I. M., Tskitishvili, O. V., Vasilyeva, A. K., Victorov, I. V., Zorov, D. B., and Skulachev, V. P. (2008) Biochemistry (Moscow), 73, 1288–1299.Google Scholar
- 99.Plotnikov, E. Y., Silachev, D. N., Chupyrkina, A. A., Danshina, M. I., Jankauskas, S. S., Morosanova, M. A., Stelmashook, E. V., Vasileva, A. K., Goryacheva, E. S., Pirogov, Y. A., Isaev, N. K., and Zorov, D. B. (2010) Biochemistry (Moscow), 75, 145–150.Google Scholar
- 100.Plotnikov, E. Y., Chupyrkina, A. A., Jankauskas, S. S., Pevzner, I. B., Silachev, D. N., Skulachev, V. P., and Zorov, D. B. (2011) Biochim. Biophys. Acta, 1812, 77–86.PubMedGoogle Scholar
- 101.Zorov, D. B., Plotnikov, E. Y., Yankauskas, S. S., Isaev, N. K., Silachev, D. N., Zorova, L. D., Pevzner, I. B., Pul’kova, N. V., Zorov, S. D., and Morosanova, M. A. (2012) Biochemistry (Moscow), 77, 742–753.Google Scholar
- 102.Agapova, L. S., Chernyak, B. V., Domnina, L. V., Dugina, V. B., Efimenko, A. Y., Fetisova, E. K., Ivanova, O. Y., Kalinina, N. I., Khromova, N. V., Kopnin, B. P., Kopnin, P. B., Korotetskaya, M. V., Lichinitser, M. R., Lukashev, A. L., Pletjushkina, O. Y., Popova, E. N., Skulachev, M. V., Shagieva, G. S., Stepanova, E. V., Titova, E. V., Tkachuk, V. A., Vasiliev, J. M., and Skulachev, V. P. (2008) Biochemistry (Moscow), 73, 1300–1316.Google Scholar
- 103.Sommer, S. S. (1994) Hum. Mutat., 3, 166–169.PubMedGoogle Scholar
- 104.Manskikh, V. N. (2004) Essays on Evolutionary Oncology [in Russian], SibGMU, Tomsk.Google Scholar
- 105.Lihtenstein, A. V. (2005) Biochemistry (Moscow), 70, 1055–1064.Google Scholar
- 106.Manskikh, V. N. (2009) Ros. Khim. Zh. (Russ.), LIII, 57–63.Google Scholar
- 107.MacCay, C. M., and Crowell, M. F. (1934) Sci. Mon., 39, 405–414.Google Scholar
- 108.MacCay, C. M., Crowell, M. F., and Maynard, L. A. (1935) J. Nutr., 10, 63–79.Google Scholar
- 109.MacCay, C. M., Maynard, L. A., and Barnes, L. L. (1943) Arch. Biochem., 2, 469–479.Google Scholar
- 110.Robertson, T. B., Marston, R., and Walters, J. W. (1934) Aust. J. Exp. Biol. Med. Sci., 12, 33.Google Scholar
- 111.Will, L. C., and MacCay, C. M. (1943) Arch. Biochem., 2, 481–484.Google Scholar
- 112.Mair, W., Goymer, P., Pletcher, S. D., and Partridge, L. (2003) Science, 301, 1731–1733.PubMedGoogle Scholar
- 113.Libert, S., and Pletcher, S. D. (2007) Cell, 131, 1231–1234.PubMedGoogle Scholar
- 114.Libert, S., Zwiener, J., Chu, X., Vanvoorhies, W., Roman, G., and Pletcher, S. D. (2007) Science, 315, 1133–1137.PubMedGoogle Scholar
- 115.Carr, C. J., King, J. T., and Visscher, B. (1949) Proc. Fedn. Am. Soc. Exp. Biol., 8, 22.Google Scholar
- 116.Stuchlikova, E., Juricova-Horakova, M., and Deyl, Z. (1975) Exp. Gerontol., 10, 141–144.PubMedGoogle Scholar
- 117.Richie, J. P., Jr., Leutzinger, Y., Parthasarathy, S., Malloy, V., Orentreich, N., and Zimmerman, J. A. (1994) FASEB J., 8, 1302–1307.PubMedGoogle Scholar
- 118.Miller, R. A., Buehner, G., Chang, Y., Harper, J. M., Sigler, R., and Smith-Wheelock, M. (2005) Aging Cell, 4, 119–125.PubMedGoogle Scholar
- 119.Sanz, A., Caro, P., Ayala, V., Portero-Otin, M., Pamplona, R., and Barja, G. (2006) FASEB J., 20, 1064–1073.PubMedGoogle Scholar
- 120.Caro, P., Gomez, J., Sanchez, I., Garcia, R., Lopez-Torres, M., Naudi, A., Portero-Otin, M., Pamplona, R., and Barja, G. (2009) Biogerontology, 10, 579–592.PubMedGoogle Scholar
- 121.Edman, U., Garcia, A. M., Busuttil, R. A., Sorensen, D., Lundell, M., Kapahi, P., and Vijg, J. (2009) Aging Cell, 8, 331–338.PubMedGoogle Scholar
- 122.Skulachev, V. P. (2011) Aging (Albany, NY), 3, 1045–1050.Google Scholar
- 123.Colman, R. J., Anderson, R. M., Johnson, S. C., Kastman, E. K., Kosmatka, K. J., Beasley, T. M., Allison, D. B., Cruzen, C., Simmons, H. A., Kemnitz, J. W., and Weindruch, R. (2009) Science, 325, 201–204.PubMedGoogle Scholar
- 124.Sun, D., Muthukumar, A. R., Lawrence, R. A., and Fernandes, G. (2001) Clin. Diagn. Lab. Immunol., 8, 1003–1011.PubMedGoogle Scholar
- 125.Gardner, E. M. (2005) J. Gerontol. A. Biol. Sci. Med. Sci., 60, 688–694.PubMedGoogle Scholar
- 126.Obukhova, L. A., Skulachev, V. P., and Kolosova, N. G. (2009) Aging (Albany NY), 1, 389–401.Google Scholar
- 127.Demianenko, I. A., Vasilieva, T. V., Domnina, L. V., Dugina, V. B., Yegorov, M. V., Ivanova, O. Yu., Ilinskaya, O. P., Pletiushkina, O. Yu., Popova, E. N., Saharov, I. Yu., Fedorov, A. V., and Chernyak, B. V. (2010) Biochemistry (Moscow), 75, 274–280.Google Scholar
- 128.Hopkin, K. (2003) Sci. Aging Knowledge Environ., 2003, NS4.PubMedGoogle Scholar
- 129.Hamilton, W. D. (1964) J. Theor. Biol., 7, 1–16.PubMedGoogle Scholar
- 130.Hamilton, W. D. (1964) J. Theor. Biol., 7, 17–52.PubMedGoogle Scholar
- 131.Dawkins, R. (2010) Extended Phenotype. Long Arm of the Gene [Russian translation], Astrel, Moscow.Google Scholar
- 132.Eng, P. M., Rimm, E. B., Fitzmaurice, G., and Kawachi, I. (2002) Am. J. Epidemiol., 155, 700–709.PubMedGoogle Scholar