Advertisement

Biochemistry (Moscow)

, Volume 77, Issue 7, pp 689–706 | Cite as

What is “phenoptosis” and how to fight it?

  • V. P. SkulachevEmail author
Review

Abstract

Phenoptosis is the death of an organism programmed by its genome. Numerous examples of phenoptosis are described in prokaryotes, unicellular eukaryotes, and all kingdoms of multicellular eukaryotes (animals, plants, and fungi). There are very demonstrative cases of acute phenoptosis when actuation of a specific biochemical or behavioral program results in immediate death. Rapid (taking days) senescence of semelparous plants is described as phenoptosis controlled by already known genes and mediated by toxic phytohormones like abscisic acid. In soya, the death signal is transmitted from beans to leaves via xylem, inducing leaf fall and death of the plant. Mutations in two genes of Arabidopsis thaliana, required for the flowering and subsequent formation of seeds, prevent senescence, strongly prolonging the lifespan of this small semelparous grass that becomes a big bush with woody stem, and initiate substitution of vegetative for sexual reproduction. The death of pacific salmon immediately after spawning is surely programmed. In this case, numerous typical traits of aging, including amyloid plaques in the brain, appear on the time scale of days. There are some indications that slow aging of higher animals and humans is also programmed, being the final step of ontogenesis. It is assumed that stepwise decline of many physiological functions during such aging increases pressure of natural selection on organisms stimulating in this way biological evolution. As a working hypothesis, the biochemical mechanism of slow aging is proposed. It is assumed that mitochondria-generated reactive oxygen species (ROS) is a tool to stimulate apoptosis, an effect decreasing with age the cell number (cellularity) of organs and tissues. A group of SkQ-type substances composed of plastoquinone and a penetrating cation were synthesized to target an antioxidant into mitochondria and to prevent the age-linked rise of the mitochondrial ROS level. Such targeting is due to the fact that mitochondria are the only cellular organelles that are negatively charged compared to the cytosol. SkQs are shown to strongly decrease concentration of ROS in mitochondria, prolong lifespan of fungi, invertebrates, fish, and mammals, and retard appearance of numerous traits of aging. Clinical trials of SkQ1 (plastoquinonyl decyltriphenylphosphonium) have been successfully completed so that the Ministry of Health of the Russian Federation recommends drops of very dilute (0.25 μM) solution of this antioxidant as a medicine to treat the syndrome of dry eye, which was previously considered an incurable disease developing with age. These drops are already available in drugstores. Thus, SkQ1 is the first mitochondria-targeted drug employed in medical practice.

Key words

evolution phenoptosis programmed aging mitochondria antioxidants therapy of dry eye syndrome 

Abbreviations

Δψ

transmembrane difference of electric potentials

BLM

bilayer planar phospholipid membrane

C12TPP

dodecyltriphenylphosphonium

MitoQ

ubiquinonyl decyltriphenylphosphonium

ROS

reactive oxygen species

SkQ

derivatives of plastoquinone and penetrating cations (Sk+)

SkQ1

plastoquinonyl decyltriphenylphosphonium

SkQR1

plastoquinonyl decylrhodamine 19

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10541_2012_9612_MOESM1_ESM.pdf (153 kb)
Supplementary material, approximately 152 KB.

References

  1. 1.
    Skulachev, V. P., and Ozrina, R. D. (2011) Biochemistry (Moscow), 76, 1–2.Google Scholar
  2. 2.
    Skulachev, V. P. (1997) Biochemistry (Moscow), 62, 1191–1195.Google Scholar
  3. 3.
    Skulachev, V. P. (1999) Biochemistry (Moscow), 64, 1418–1426.Google Scholar
  4. 4.
    Longo, V. D., Mitteldorf, J., and Skulachev, V. P. (2005) Nat. Rev. Genet., 6, 866–872.PubMedGoogle Scholar
  5. 5.
    Libertini, G. (2012) Biochemistry (Moscow), 77, 707–715.Google Scholar
  6. 6.
    Koonin, E. V., and Aravind, L. (2002) Cell Death Differ., 9, 394–404.PubMedGoogle Scholar
  7. 7.
    Lewis, K. (2000) Microbiol. Mol. Biol. Rev., 64, 503–514.PubMedGoogle Scholar
  8. 8.
    Skulachev, V. P. (2003) in Model Systems in Aging (Nystrom, T., and Osiewacz, H. D., eds.) Springer-Verlag, Berlin-Heidelberg, pp. 191–238.Google Scholar
  9. 9.
    Severin, F. F., and Hyman, A. A. (2002) Curr. Biol., 12, R233–R235.PubMedGoogle Scholar
  10. 10.
    Pozniakovsky, A. I., Knorre, D. A., Markova, O. V., Hyman, A. A., Skulachev, V. P., and Severin, F. F. (2005) J. Cell Biol., 168, 257–269.PubMedGoogle Scholar
  11. 11.
    Skulachev, V. P. (2002) Ann. N.Y. Acad. Sci., 959, 214–237.PubMedGoogle Scholar
  12. 12.
    Severin, F. F., and Skulachev, V. P. (2009) Advances Gerontol. (Russ.), 22, 37–48.Google Scholar
  13. 13.
    Skulachev, V. P. (2009) Rus. Chem. J. (Russ.), LIII, 125–140.Google Scholar
  14. 14.
    Sukhanova, E. I., Rogov, A. G., Severin, F. F., and Zvyagilskaya, R. A. (2012) Biochemistry (Moscow), 77, 761–775.Google Scholar
  15. 15.
    Nooden, L. D., Guiamet, J. J., and John, I. (1997) Physiol. Plant., 101, 746–753.Google Scholar
  16. 16.
    Leopold, A. C., Niedergangkamien, E., and Janick, J. (1959) Plant Physiol., 34, 570–573.PubMedGoogle Scholar
  17. 17.
    Lindoo, S. J., and Nooden, L. D. (1977) Plant Physiol., 59, 1136–1140.PubMedGoogle Scholar
  18. 18.
    Nooden, L. D., and Murray, B. J. (1982) Plant Physiol., 69, 754–756.PubMedGoogle Scholar
  19. 19.
    Skulachev, V. P. (2011) Aging (Albany, N.Y.), 3, 1120–1123.Google Scholar
  20. 20.
    Kirkwood, T. B. L., and Melov, S. (2011) Curr. Biol., 21, R701–R707.PubMedGoogle Scholar
  21. 21.
    Cutler, S. R., Rodriguez, P. L., Finkelstein, R. R., and Abrams, S. R. (2010) Ann. Rev. Plant Biol., 61, 651–679.Google Scholar
  22. 22.
    Cho, D., Shin, D. J., Jeon, B. W., and Kwak, J. M. (2009) J. Plant Biol., 52, 102–113.Google Scholar
  23. 23.
    Melzer, S., Lens, F., Gennen, J., Vanneste, S., Rohde, A., and Beeckman, T. (2008) Nature Genet., 40, 1489–1492.PubMedGoogle Scholar
  24. 24.
    Weismann, A. (1889) Essays upon Heredity and Kindred Biological Problems, Clarendon Press, Oxford.Google Scholar
  25. 25.
    Carlquist, S. J. (1974) Island Biology, Columbia University Press, New York.Google Scholar
  26. 26.
    Groover, A. T. (2005) Trends Plant Sci., 10, 210–214.PubMedGoogle Scholar
  27. 27.
    Kim, S. C., Crawford, D. J., FranciscoOrtega, J., and SantosGuerra, A. (1996) PNAS, 93, 7743–7748.PubMedGoogle Scholar
  28. 28.
    Bohle, U. R., Hilger, H. H., and Martin, W. F. (1996) PNAS, 93, 11740–11745.PubMedGoogle Scholar
  29. 29.
    Libbert, A. (1976) Physiology of Plants [Russian translation], Mir, Moscow.Google Scholar
  30. 30.
    Wodinsky, J. (1977) Science, 198, 948–951.PubMedGoogle Scholar
  31. 31.
    Nesis, K. N. (1997) in Russian Science: to Persevere and Be Reborn (Byalko, A. V., ed.) [in Russian], Fizmatizdat, Moscow, pp. 358–365.Google Scholar
  32. 32.
    Dawkins, R. (1976) The Selfish Gene, Oxford University Press, New York.Google Scholar
  33. 33.
    Bradley, A. J., McDonald, I. R., and Lee, A. K. (1980) General Comparat. Endocrinol., 40, 188–200.Google Scholar
  34. 34.
    Skulachev, V. P. (2005) Vestnik RAN (Russ.), 75, 831–843.Google Scholar
  35. 35.
    Austad, S. N. (2004) Aging Cell, 3, 249–251.PubMedGoogle Scholar
  36. 36.
    Maldonado, T. A., Jones, R. E., and Norris, D. O. (2000) Brain Res., 858, 237–251.PubMedGoogle Scholar
  37. 37.
    Maldonado, T. A., Jones, R. E., and Norris, D. O. (2002) J. Neurobiol., 53, 11–20.PubMedGoogle Scholar
  38. 38.
    Maldonado, T. A., Jones, R. E., and Norris, D. O. (2002) J. Neurobiol., 53, 21–35.PubMedGoogle Scholar
  39. 39.
    Kipling, D., Davis, T., Ostler, E. L., and Faragher, R. G. A. (2004) Science, 305, 1426–1431.PubMedGoogle Scholar
  40. 40.
    Terzibasi, E., Valenzano, D. R., and Cellerino, A. (2007) Exp. Gerontol., 42, 81–89.PubMedGoogle Scholar
  41. 41.
    Comfort, A. (1979) The Biology of Senescence, Elsevier, New York.Google Scholar
  42. 42.
    Schopenhauer, A. (1993) The World as Will and Representation [Russian translation], Moskovskii Klub, Moscow.Google Scholar
  43. 43.
    Darwin, C. (1871) The Descent of Man, and Selection in Relation to Sex, D. Appleton and Company, New York.Google Scholar
  44. 44.
    Medawar, P. B. (1952) An Unsolved Problem of Biology, Published for the College by H. K. Lewis, London.Google Scholar
  45. 44a.
    Bowles, J. T. (1998) Med. Hypotheses, 51, 179–221.PubMedGoogle Scholar
  46. 44b.
    Bowles, J. T. (2000) Med. Hypotheses, 54, 236–339.Google Scholar
  47. 45.
    Loison, A., Festa-Bianchet, M., Gaillard, J. M., Jorgenson, J. T., and Jullien, J. M. (1999) Ecology, 80, 2539–2554.Google Scholar
  48. 46.
    Bonduriansky, R., and Brassil, C. E. (2002) Nature, 420, 377–377.PubMedGoogle Scholar
  49. 47.
    Gavrilova, N. S., Gavrilov, L. A., Severin, F. F., and Skulachev, V. P. (2012) Biochemistry (Moscow), 77, 754–760.Google Scholar
  50. 48.
    Khokhlov, A. N. (2009) Ros. Khim. Zh., LIII, 111–117.Google Scholar
  51. 49.
    Vreeland, R. H., Rosenzweig, W. D., and Powers, D. W. (2000) Nature, 407, 897–900.PubMedGoogle Scholar
  52. 50.
    George, J. C., Bada, J., Zeh, J., Scott, L., Brown, S. E., O’Hara, T., and Suydam, R. (1999) Canad. J. Zool., 77, 571–580.Google Scholar
  53. 51.
    Buffenstein, R. (2005) J. Gerontol. A. Biol. Sci. Med. Sci., 60, 1369–1377.PubMedGoogle Scholar
  54. 52.
    Dawkins, R. (1989) in Artificial Life Proceedings Reading (Langton, C., ed.) Addison Wesley, Massachusetts, pp. 201–220.Google Scholar
  55. 53.
    Kirschner, M., and Gerhart, J. (1998) PNAS, 95, 8420–8427.PubMedGoogle Scholar
  56. 54.
    Skulachev, V. P., Bogachev, A. V., and Kasparinsky, F. O. (2010) Membrane Bioenergetics [in Russian], Moscow University Publishers, Moscow.Google Scholar
  57. 55.
    Mufazalov, I. A., Penkov, D. N., Chernyak, B. V., Pletyushkina, O. Yu., Vyssokih, M. Yu., Kirpichnikov, M. P., Dolgikh, D. A., Kruglov, A. A., Kuprash, D. V., Skulachev, V. P., and Nedospasov, S. A. (2009) Mol. Biol. (Moscow), 43, 648–656.Google Scholar
  58. 56.
    Sharonov, G. V., Feofanov, A. V., Bocharova, O. V., Astapova, M. V., Dedukhova, V. I., Chernyak, B. V., Dolgikh, D. A., Arseniev, A. S., Skulachev, V. P., and Kirpichnikov, M. P. (2005) Apoptosis, 10, 797–808.PubMedGoogle Scholar
  59. 57.
    Mott, J. L., Zhang, D., Freeman, J. C., Mikolajczak, P., Chang, S. W., and Zassenhaus, H. P. (2004) Biochem. Biophys. Res. Commun., 319, 1210–1215.PubMedGoogle Scholar
  60. 58.
    Trifunovic, A., Wredenberg, A., Falkenberg, M., Spelbrink, J. N., Rovio, A. T., Bruder, C. E., Bohlooly, Y. M., Gidlof, S., Oldfors, A., Wibom, R., Tornell, J., Jacobs, H. T., and Larsson, N. G. (2004) Nature, 429, 417–423.PubMedGoogle Scholar
  61. 59.
    Kujoth, G. C., Hiona, A., Pugh, T. D., Someya, S., Panzer, K., Wohlgemuth, S. E., Hofer, T., Seo, A. Y., Sullivan, R., Jobling, W. A., Morrow, J. D., van Remmen, H., Sedivy, J. M., Yamasoba, T., Tanokura, M., Weindruch, R., Leeuwenburgh, C., and Prolla, T. A. (2005) Science, 309, 481–484.PubMedGoogle Scholar
  62. 60.
    Harman, D. (1956) J. Gerontol., 11, 298–300.PubMedGoogle Scholar
  63. 61.
    Emanuel, N. M. (1975) Izv. AN SSSR, 785–794.Google Scholar
  64. 62.
    Szilard, L. (1959) PNAS, 45, 30–45.PubMedGoogle Scholar
  65. 63.
    Skulachev, V. P., and Longo V. D. (2005) Ann. N. Y. Acad. Sci., 1057, 145–164.PubMedGoogle Scholar
  66. 63a.
    Szczesny, B., Tann, A. W., and Mitra, S. (2010) Mech. Ageing Develop., 131, 330–337.Google Scholar
  67. 64.
    Brunet-Rossinni, A. K., and Austad, S. N. (2004) Biogerontology, 5, 211–222.PubMedGoogle Scholar
  68. 65.
    Ku, H. H., Brunk, U. T., and Sohal, R. S. (1993) Free Radic. Biol. Med., 15, 621–627.PubMedGoogle Scholar
  69. 66.
    Barja, G. (1998) Ann. N. Y. Acad. Sci., 854, 224–238.PubMedGoogle Scholar
  70. 67.
    Barja, G., and Herrero, A. (2000) FASEB J., 14, 312–318.PubMedGoogle Scholar
  71. 68.
    Lambert, A. J., Boysen, H. M., Buckingham, J. A., Yang, T., Podlutsky, A., Austad, S. N., Kunz, T. H., Buffenstein, R., and Brand, M. D. (2007) Aging Cell, 6, 607–618.PubMedGoogle Scholar
  72. 69.
    Dilman, V. M. (1978) Mech. Ageing Dev., 8, 153–173.PubMedGoogle Scholar
  73. 70.
    Dilman, V. M. (1982) Large Biological Clock [in Russian], Znaniye, Moscow.Google Scholar
  74. 71.
    Longo, V. D., and Finch, C. E. (2003) Science, 299, 1342–1346.PubMedGoogle Scholar
  75. 72.
    Kim, E. B., Fang, X. D., Fushan, A. A., Huang, Z. Y., Lobanov, A. V., Han, L. J., Marino, S. M., Sun, X. Q., Turanov, A. A., Yang, P. C., Yim, S. H., Zhao, X., Kasaikina, M. V., Stoletzki, N., Peng, C. F., Polak, P., Xiong, Z. Q., Kiezun, A., Zhu, Y. B., Chen, Y. X., Kryukov, G. V., Zhang, Q., Peshkin, L., Yang, L., Bronson, R. T., Buffenstein, R., Wang, B., Han, C. L., Li, Q. Y., Chen, L., Zhao, W., Sunyaev, S. R., Park, T. J., Zhang, G. J., Wang, J., and Gladyshev, V. N. (2011) Nature, 479, 223–227.PubMedGoogle Scholar
  76. 73.
    Liberman, E. A., Topaly, V. P., Tsofina, L. M., Jasaitis, A. A., and Skulachev, V. P. (1969) Nature, 222, 1076–1078.PubMedGoogle Scholar
  77. 74.
    Green, D. E. (1974) Biochim. Biophys. Acta, 346, 27–78.PubMedGoogle Scholar
  78. 75.
    Liberman, E. A., and Skulachev, V. P. (1970) Biochim. Biophys. Acta, 216, 30–42.PubMedGoogle Scholar
  79. 76.
    Severin, S. Ye., Skulachev, V. P., and Yaguzhinsky, L. S. (1970) Biokhimiya, 35, 1250–1257.Google Scholar
  80. 77.
    Burns, R. J., Smith, R. A., and Murphy, M. P. (1995) Arch. Biochem. Biophys., 322, 60–68.PubMedGoogle Scholar
  81. 78.
    Smith, R. A., Porteous, C. M., Coulter, C. V., and Murphy, M. P. (1999) Eur. J. Biochem., 263, 709–716.PubMedGoogle Scholar
  82. 79.
    Kelso, G. F., Porteous, C. M., Coulter, C. V., Hughes, G., Porteous, W. K., Ledgerwood, E. C., Smith, R. A., and Murphy, M. P. (2001) J. Biol. Chem., 276, 4588–4596.PubMedGoogle Scholar
  83. 80.
    Murphy, M. P., and Smith, R. A. (2007) Annu. Rev. Pharmacol. Toxicol., 47, 629–656.PubMedGoogle Scholar
  84. 81.
    Antonenko, Y. N., Avetisyan, A. V., Bakeeva, L. E., Chernyak, B. V., Chertkov, V. A., Domnina, L. V., Ivanova, O. Y., Izyumov, D. S., Khailova, L. S., Klishin, S. S., Korshunova, G. A., Lyamzaev, K. G., Muntyan, M. S., Nepryakhina, O. K., Pashkovskaya, A. A., Pletjushkina, O. Y., Pustovidko, A. V., Roginsky, V. A., Rokitskaya, T. I., Ruuge, E. K., Saprunova, V. B., Severina, I. I., Simonyan, R. A., Skulachev, I. V., Skulachev, M. V., Sumbatyan, N. V., Sviryaeva, I. V., Tashlitsky, V. N., Vassiliev, J. M., Vyssokikh, M. Y., Yaguzhinsky, L. S., Zamyatnin, A. A., Jr., and Skulachev, V. P. (2008) Biochemistry (Moscow), 73, 1273–1287.Google Scholar
  85. 82.
    Skulachev, V. P., Anisimov, V. N., Antonenko, Y. N., Bakeeva, L. E., Chernyak, B. V., Erichev, V. P., Filenko, O. F., Kalinina, N. I., Kapelko, V. I., Kolosova, N. G., Kopnin, B. P., Korshunova, G. A., Lichinitser, M. R., Obukhova, L. A., Pasyukova, E. G., Pisarenko, O. I., Roginsky, V. A., Ruuge, E. K., Senin, I. I., Severina, I. I., Skulachev, M. V., Spivak, I. M., Tashlitsky, V. N., Tkachuk, V. A., Vyssokikh, M. Y., Yaguzhinsky, L. S., and Zorov, D. B. (2009) Biochim. Biophys. Acta, 1787, 437–461.PubMedGoogle Scholar
  86. 83.
    James, A. M., Cocheme, H. M., Smith, R. A., and Murphy, M. P. (2005) J. Biol. Chem., 280, 21295–21312.PubMedGoogle Scholar
  87. 84.
    O’Malley, Y., Fink, B. D., Ross, N. C., Prisinzano, T. E., and Sivitz, W. I. (2006) J. Biol. Chem., 281, 39766–39775.PubMedGoogle Scholar
  88. 85.
    Doughan, A. K., and Dikalov, S. I. (2007) Antioxid. Redox. Signal., 9, 1825–1836.PubMedGoogle Scholar
  89. 86.
    Kruk, J., Jemiola-Rzeminska, M., and Strzalka, K. (1997) Chem. Phys. Lipids, 87, 73–80.Google Scholar
  90. 87.
    Roginsky, V., Barsukova, T., Loshadkin, D., and Pliss, E. (2003) Chem. Phys. Lipids, 125, 49–58.PubMedGoogle Scholar
  91. 88.
    Skulachev, V. P. (2007) Biochemistry (Moscow), 72, 1385–1396.Google Scholar
  92. 88a.
    Fink, B. D., Herlein, J. A., Yorek, M. A., Fenner, A. M., Kerns, R. J., and Sivitz, W. I. (2012) J. Pharm. Exp. Therap., DOI: 10.1124/jpet.112.195586.Google Scholar
  93. 89.
    Skulachev, V. P., Antonenko, Y. N., Cherepanov, D. A., Chernyak, B. V., Izyumov, D. S., Khailova, L. S., Klishin, S. S., Korshunova, G. A., Lyamzaev, K. G., Pletjushkina, O. Y., Roginsky, V. A., Rokitskaya, T. I., Severin, F. F., Severina, I. I., Simonyan, R. A., Skulachev, M. V., Sumbatyan, N. V., Sukhanova, E. I., Tashlitsky, V. N., Trendeleva, T. A., Vyssokikh, M. Y., and Zvyagilskaya, R. A. (2010) Biochim. Biophys. Acta, 1797, 878–889.PubMedGoogle Scholar
  94. 90.
    Roginsky, V. A., Tashlitsky, V. N., and Skulachev, V. P. (2009) Aging (Albany, NY), 1, 481–489.Google Scholar
  95. 91.
    Skulachev, M. V., Antonenko, Y. N., Anisimov, V. N., Chernyak, B. V., Cherepanov, D. A., Chistyakov, V. A., Egorov, M. V., Kolosova, N. G., Korshunova, G. A., Lyamzaev, K. G., Plotnikov, E. Y., Roginsky, V. A., Savchenko, A. Y., Severina, I. I., Severin, F. F., Shkurat, T. P., Tashlitsky, V. N., Shidlovsky, K. M., Vyssokikh, M. Y., Zamyatnin, A. A., Zorov, D. B., and Skulachev, V. P. (2011) Curr. Drug Targets, 12, 800–826.PubMedGoogle Scholar
  96. 92.
    Severin, F. F., Severina, I. I., Antonenko, Y. N., Rokitskaya, T. I., Cherepanov, D. A., Mokhova, E. N., Vyssokikh, M. Y., Pustovidko, A. V., Markova, O. V., Yaguzhinsky, L. S., Korshunova, G. A., Sumbatyan, N. V., Skulachev, M. V., and Skulachev, V. P. (2010) PNAS, 107, 663–668.PubMedGoogle Scholar
  97. 93.
    Anisimov, V. N., Egorov, M. V., Krasilshchikova, M. S., Lyamzaev, K. G., Manskikh, V. N., Moshkin, M. P., Novikov, E. A., Popovich, I. G., Rogovin, K. A., Shabalina, I. G., Shekarova, O. N., Skulachev, M. V., Titova, T. V., Vygodin, V. A., Vyssokikh, M. Y., Yurova, M. N., Zabezhinsky, M. A., and Skulachev, V. P. (2011) Aging (Albany NY), 3, 1110–1119.Google Scholar
  98. 94.
    Anisimov, V. N., Bakeeva, L. E., Egormin, P. A., Filenko, O. F., Isakova, E. F., Manskikh, V. N., Mikhelson, V. M., Panteleeva, A. A., Pasyukova, E. G., Pilipenko, D. I., Piskunova, T. S., Popovich, I. G., Roshchina, N. V., Rybina, O. Y., Saprunova, V. B., Samoylova, T. A., Semenchenko, A. V., Skulachev, M. V., Spivak, I. M., Tsybul’ko, E. A., Tyndyk, M. L., Vyssokikh, M. Y., Yurova, M. N., Zabezhinsky, M. A., and Skulachev, V. P. (2008) Biochemistry (Moscow), 73, 1329–1342.Google Scholar
  99. 95.
    Stefanova, N. A., Fursova, A., and Kolosova, N. G. (2010) J. Alzheimer’s Dis., 21, 479–491.Google Scholar
  100. 96.
    Skulachev, V. P. (2012) J. Alzheimer’s Dis., 28, 283–289.Google Scholar
  101. 97.
    Neroev, V. V., Archipova, M. M., Bakeeva, L. E., Fursova, A., Grigorian, E. N., Grishanova, A. Y., Iomdina, E. N., Ivashchenko, Zh. N., Katargina, L. A., Khoroshilova-Maslova, I. P., Kilina, O. V., Kolosova, N. G., Kopenkin, E. P., Korshunov, S. S., Kovaleva, N. A., Novikova, Y. P., Philippov, P. P., Pilipenko, D. I., Robustova, O. V., Saprunova, V. B., Senin, I. I., Skulachev, M. V., Sotnikova, L. F., Stefanova, N. A., Tikhomirova, N. K., Tsapenko, I. V., Shchipanova, A. I., Zinovkin, R. A., and Skulachev, V. P. (2008) Biochemistry (Moscow), 73, 1317–1328.Google Scholar
  102. 98.
    Bakeeva, L. E., Barskov, I. V., Egorov, M. V., Isaev, N. K., Kapelko, V. I., Kazachenko, A. V., Kirpatovsky, V. I., Kozlovsky, S. V., Lakomkin, V. L., Levina, S. B., Pisarenko, O. I., Plotnikov, E. Y., Saprunova, V. B., Serebryakova, L. I., Skulachev, M. V., Stelmashook, E. V., Studneva, I. M., Tskitishvili, O. V., Vasilyeva, A. K., Victorov, I. V., Zorov, D. B., and Skulachev, V. P. (2008) Biochemistry (Moscow), 73, 1288–1299.Google Scholar
  103. 99.
    Plotnikov, E. Y., Silachev, D. N., Chupyrkina, A. A., Danshina, M. I., Jankauskas, S. S., Morosanova, M. A., Stelmashook, E. V., Vasileva, A. K., Goryacheva, E. S., Pirogov, Y. A., Isaev, N. K., and Zorov, D. B. (2010) Biochemistry (Moscow), 75, 145–150.Google Scholar
  104. 100.
    Plotnikov, E. Y., Chupyrkina, A. A., Jankauskas, S. S., Pevzner, I. B., Silachev, D. N., Skulachev, V. P., and Zorov, D. B. (2011) Biochim. Biophys. Acta, 1812, 77–86.PubMedGoogle Scholar
  105. 101.
    Zorov, D. B., Plotnikov, E. Y., Yankauskas, S. S., Isaev, N. K., Silachev, D. N., Zorova, L. D., Pevzner, I. B., Pul’kova, N. V., Zorov, S. D., and Morosanova, M. A. (2012) Biochemistry (Moscow), 77, 742–753.Google Scholar
  106. 102.
    Agapova, L. S., Chernyak, B. V., Domnina, L. V., Dugina, V. B., Efimenko, A. Y., Fetisova, E. K., Ivanova, O. Y., Kalinina, N. I., Khromova, N. V., Kopnin, B. P., Kopnin, P. B., Korotetskaya, M. V., Lichinitser, M. R., Lukashev, A. L., Pletjushkina, O. Y., Popova, E. N., Skulachev, M. V., Shagieva, G. S., Stepanova, E. V., Titova, E. V., Tkachuk, V. A., Vasiliev, J. M., and Skulachev, V. P. (2008) Biochemistry (Moscow), 73, 1300–1316.Google Scholar
  107. 103.
    Sommer, S. S. (1994) Hum. Mutat., 3, 166–169.PubMedGoogle Scholar
  108. 104.
    Manskikh, V. N. (2004) Essays on Evolutionary Oncology [in Russian], SibGMU, Tomsk.Google Scholar
  109. 105.
    Lihtenstein, A. V. (2005) Biochemistry (Moscow), 70, 1055–1064.Google Scholar
  110. 106.
    Manskikh, V. N. (2009) Ros. Khim. Zh. (Russ.), LIII, 57–63.Google Scholar
  111. 107.
    MacCay, C. M., and Crowell, M. F. (1934) Sci. Mon., 39, 405–414.Google Scholar
  112. 108.
    MacCay, C. M., Crowell, M. F., and Maynard, L. A. (1935) J. Nutr., 10, 63–79.Google Scholar
  113. 109.
    MacCay, C. M., Maynard, L. A., and Barnes, L. L. (1943) Arch. Biochem., 2, 469–479.Google Scholar
  114. 110.
    Robertson, T. B., Marston, R., and Walters, J. W. (1934) Aust. J. Exp. Biol. Med. Sci., 12, 33.Google Scholar
  115. 111.
    Will, L. C., and MacCay, C. M. (1943) Arch. Biochem., 2, 481–484.Google Scholar
  116. 112.
    Mair, W., Goymer, P., Pletcher, S. D., and Partridge, L. (2003) Science, 301, 1731–1733.PubMedGoogle Scholar
  117. 113.
    Libert, S., and Pletcher, S. D. (2007) Cell, 131, 1231–1234.PubMedGoogle Scholar
  118. 114.
    Libert, S., Zwiener, J., Chu, X., Vanvoorhies, W., Roman, G., and Pletcher, S. D. (2007) Science, 315, 1133–1137.PubMedGoogle Scholar
  119. 115.
    Carr, C. J., King, J. T., and Visscher, B. (1949) Proc. Fedn. Am. Soc. Exp. Biol., 8, 22.Google Scholar
  120. 116.
    Stuchlikova, E., Juricova-Horakova, M., and Deyl, Z. (1975) Exp. Gerontol., 10, 141–144.PubMedGoogle Scholar
  121. 117.
    Richie, J. P., Jr., Leutzinger, Y., Parthasarathy, S., Malloy, V., Orentreich, N., and Zimmerman, J. A. (1994) FASEB J., 8, 1302–1307.PubMedGoogle Scholar
  122. 118.
    Miller, R. A., Buehner, G., Chang, Y., Harper, J. M., Sigler, R., and Smith-Wheelock, M. (2005) Aging Cell, 4, 119–125.PubMedGoogle Scholar
  123. 119.
    Sanz, A., Caro, P., Ayala, V., Portero-Otin, M., Pamplona, R., and Barja, G. (2006) FASEB J., 20, 1064–1073.PubMedGoogle Scholar
  124. 120.
    Caro, P., Gomez, J., Sanchez, I., Garcia, R., Lopez-Torres, M., Naudi, A., Portero-Otin, M., Pamplona, R., and Barja, G. (2009) Biogerontology, 10, 579–592.PubMedGoogle Scholar
  125. 121.
    Edman, U., Garcia, A. M., Busuttil, R. A., Sorensen, D., Lundell, M., Kapahi, P., and Vijg, J. (2009) Aging Cell, 8, 331–338.PubMedGoogle Scholar
  126. 122.
    Skulachev, V. P. (2011) Aging (Albany, NY), 3, 1045–1050.Google Scholar
  127. 123.
    Colman, R. J., Anderson, R. M., Johnson, S. C., Kastman, E. K., Kosmatka, K. J., Beasley, T. M., Allison, D. B., Cruzen, C., Simmons, H. A., Kemnitz, J. W., and Weindruch, R. (2009) Science, 325, 201–204.PubMedGoogle Scholar
  128. 124.
    Sun, D., Muthukumar, A. R., Lawrence, R. A., and Fernandes, G. (2001) Clin. Diagn. Lab. Immunol., 8, 1003–1011.PubMedGoogle Scholar
  129. 125.
    Gardner, E. M. (2005) J. Gerontol. A. Biol. Sci. Med. Sci., 60, 688–694.PubMedGoogle Scholar
  130. 126.
    Obukhova, L. A., Skulachev, V. P., and Kolosova, N. G. (2009) Aging (Albany NY), 1, 389–401.Google Scholar
  131. 127.
    Demianenko, I. A., Vasilieva, T. V., Domnina, L. V., Dugina, V. B., Yegorov, M. V., Ivanova, O. Yu., Ilinskaya, O. P., Pletiushkina, O. Yu., Popova, E. N., Saharov, I. Yu., Fedorov, A. V., and Chernyak, B. V. (2010) Biochemistry (Moscow), 75, 274–280.Google Scholar
  132. 128.
    Hopkin, K. (2003) Sci. Aging Knowledge Environ., 2003, NS4.PubMedGoogle Scholar
  133. 129.
    Hamilton, W. D. (1964) J. Theor. Biol., 7, 1–16.PubMedGoogle Scholar
  134. 130.
    Hamilton, W. D. (1964) J. Theor. Biol., 7, 17–52.PubMedGoogle Scholar
  135. 131.
    Dawkins, R. (2010) Extended Phenotype. Long Arm of the Gene [Russian translation], Astrel, Moscow.Google Scholar
  136. 132.
    Eng, P. M., Rimm, E. B., Fitzmaurice, G., and Kawachi, I. (2002) Am. J. Epidemiol., 155, 700–709.PubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Belozersky Institute of Physico-Chemical Biology and Faculty of Bioengineering and BioinformaticsLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations