Advertisement

Biochemistry (Moscow)

, Volume 77, Issue 6, pp 671–678 | Cite as

Cerebral ischemia-reperfusion induces GAPDH S-nitrosylation and nuclear translocation

  • Chong Li
  • Jun-Jun Feng
  • Yong-Ping Wu
  • Guang-Yi ZhangEmail author
Article

Abstract

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a glycolytic enzyme, plays an important role in glycolysis. It was reported that GAPDH undergoes S-nitrosylation, which facilitated its binding to Siah1 and resulted in nuclear translocation and cell apoptosis. The results of this study show that GAPDH S-nitrosylation, Siah1 binding, translocation to nucleus, and concomitant neuron death occur during the early stages of reperfusion in the rat four-vessel occlusion ischemic model. N-Methyl-D-aspartate receptor antagonist MK801, neuronal nitric oxide synthase inhibitor 7-nitroindazole, or monoamine oxidase-B inhibitor (R)-(-)-deprenyl hydrochloride could inhibit GAPDH S-nitrosylation and translocation and exert neuroprotective effects.

Key words

GAPDH S-nitrosylation Siah1 deprenyl hydrochloride cerebral ischemia 

Abbreviations

BCIP

5-bromo-4-chloro-3-indolyl-phosphate

DEP

(R)-(-)-deprenyl hydrochloride

DMSO

dimethylsulfoxide

GAPDH

glyceraldehyde-3-phosphate dehydrogenase

MAO-B

monoamine oxidase B

MCAo

middle cerebral artery occlusion

NBT

nitroblue tetrazolium

NMDA

N-methyl-D-aspartate

nNOS

neuronal nitric oxide synthase

NO

nitric oxide

NO-Cbl

nitrosylcobalamin

7NI

7-nitroindazole

4-VO

four-vessel occlusion

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Leist, M., and Nicotera, P. (1998) Rev. Physiol. Biochem. Pharmacol., 132, 79–125.PubMedCrossRefGoogle Scholar
  2. 2.
    Lee, J. M., Zipfel, G. J., and Choi, D. W. (1999) Nature, 399, A7–14.PubMedGoogle Scholar
  3. 3.
    Hess, D. T., Matsumoto, A., Kim, S. O., Marshall, H. E., and Stamler, J. S. (2005) Nat. Rev. Mol. Cell Biol., 6, 150–166.PubMedCrossRefGoogle Scholar
  4. 4.
    Stamler, J. S., Simon, D. I., Osborne, J. A., Mullins, M. E., Jaraki, O., Michel, T., Singel, D. J., and Loscalzo, J. (1992) Proc. Natl. Acad. Sci. USA, 89, 444–448.PubMedCrossRefGoogle Scholar
  5. 5.
    Ahern, G. P., Klyachko, V. A., and Jackson, M. B. (2002) Trends Neurosci., 25, 510–517.PubMedCrossRefGoogle Scholar
  6. 6.
    Sattler, R., Xiong, Z., Lu, W. Y., Hafner, M., MacDonald, J. F., and Tymianski, M. (1999) Science, 284, 1845–1848.PubMedCrossRefGoogle Scholar
  7. 7.
    Yu, H. M., Xu, J., Li, C., Zhou, C., Zhang, F., Han, D., and Zhang, G. Y. (2008) Neuroscience, 155, 1120–1132.PubMedCrossRefGoogle Scholar
  8. 8.
    Radi, R. (2004) Proc. Natl. Acad. Sci. USA, 101, 4003–4008.PubMedCrossRefGoogle Scholar
  9. 9.
    Jaffrey, S. R., Erdjument-Bromage, H., Ferris, C. D., Tempst, P., and Snyder, S. H. (2001) Nat. Cell Biol., 3, 193–197.PubMedCrossRefGoogle Scholar
  10. 10.
    Christopherson, K. S., Hillier, B. J., Lim, W. A., and Bredt, D. S. (1999) J. Biol. Chem., 274, 27467–27473.PubMedCrossRefGoogle Scholar
  11. 11.
    Hara, M. R., Agrawal, N., Kim, S. F., Cascio, M. B., Fujimuro, M., Ozeki, Y., Takahashi, M., Cheah, J. H., Tankou, S. K., Hester, L. D., Ferris, C. D., Hayward, S. D., Snyder, S. H., and Sawa, A. (2005) Nat. Cell Biol., 7, 665–674.PubMedCrossRefGoogle Scholar
  12. 12.
    Pulsinelli, W. A., and Brierley, J. B. (1979) Stroke, 10, 267–272.PubMedCrossRefGoogle Scholar
  13. 13.
    Nagasawa, H., and Kogure, K. (1989) Stroke, 20, 1037–1043.PubMedCrossRefGoogle Scholar
  14. 14.
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951) J. Biol. Chem., 193, 265–275.PubMedGoogle Scholar
  15. 15.
    Kozutsumi, Y., Normington, K., Press, E., Slaughter, C., Sambrook, J., and Gething, M. J. (1989) J. Cell Sci. Suppl., 11, 115–137.PubMedGoogle Scholar
  16. 16.
    Ishitani, R., Tanaka, M., Sunaga, K., Katsube, N., and Chuang, D. M. (1998) Mol. Pharmacol., 53, 701–707.PubMedGoogle Scholar
  17. 17.
    MacManus, J. P., Hill, I. E., Huang, Z. G., Rasquinha, I., Xue, D., and Buchan, A. M. (1994) Neuroreport, 5, 493–496.PubMedCrossRefGoogle Scholar
  18. 18.
    Li, Y., Chopp, M., Jiang, N., Yao, F., and Zaloga, C. (1995) J. Cereb. Blood Flow Metab., 15, 389–397.PubMedCrossRefGoogle Scholar
  19. 19.
    Gillardon, F., Lenz, C., Waschke, K. F., Krajewski, S., Reed, J. C., Zimmermann, M., and Kuschinsky, W. (1996) Brain Res. Mol. Brain Res., 40, 254–260.PubMedCrossRefGoogle Scholar
  20. 20.
    Fujimura, M., Morita-Fujimura, Y., Murakami, K., Kawase, M., and Chan, P. H. (1998) J. Cereb. Blood Flow Metab., 18, 1239–1247.PubMedCrossRefGoogle Scholar
  21. 21.
    Namura, S., Zhu, J., Fink, K., Endres, M., Srinivasan, A., Tomaselli, K. J., Yuan, J., and Moskowitz, M. A. (1998) J. Neurosci., 18, 3659–3668.PubMedGoogle Scholar
  22. 22.
    Velier, J. J., Ellison, J. A., Kikly, K. K., Spera, P. A., Barone, F. C., and Feuerstein, G. Z. (1999) J. Neurosci., 19, 5932–5941.PubMedGoogle Scholar
  23. 23.
    Caswell, A. H., and Corbett, A. M. (1985) J. Biol. Chem., 260, 6892–6898.PubMedGoogle Scholar
  24. 24.
    Robbins, A. R., Ward, R. D., and Oliver, C. (1995) J. Cell Biol., 130, 1093–1104.PubMedCrossRefGoogle Scholar
  25. 25.
    Singh, R., and Green, M. R. (1993) Science, 259, 365–368.PubMedCrossRefGoogle Scholar
  26. 26.
    Morgenegg, G., Winkler, G. C., Hubscher, U., Heizmann, C. W., Mous, J., and Kuenzle, C. C. (1986) J. Neurochem., 47, 54–62.PubMedCrossRefGoogle Scholar
  27. 27.
    Baxi, M. D., and Vishwanatha, J. K. (1995) Biochemistry, 34, 9700–9707.PubMedCrossRefGoogle Scholar
  28. 28.
    Ishitani, R., Sunaga, K., Hirano, A., Saunders, P., Katsube, N., and Chuang, D. M. (1996) J. Neurochem., 66, 928–935.PubMedCrossRefGoogle Scholar
  29. 29.
    Hwang, I. K., Yoo, K. Y., Kim, D. W., Choi, J. H., Lee, I. S., and Won, M. H. (2007) Neurochem. Res., 32, 1530–1538.PubMedCrossRefGoogle Scholar
  30. 30.
    Arutyunova, E. I., Danshina, P. V., Domnina, L. V., Pleten, A. P., and Muronetz, V. I. (2003) Biochem. Biophys. Res. Commun., 307, 547–552.PubMedCrossRefGoogle Scholar
  31. 31.
    Lange, K. W., Riederer, P., and Youdim, M. B. (1994) Clin. Pharmacol. Ther., 56, 734–741.PubMedCrossRefGoogle Scholar
  32. 32.
    Carlile, G. W., Chalmers-Redman, R. M., Tatton, N. A., Pong, A., Borden, K. E., and Tatton, W. G. (2000) Mol. Pharmacol., 57, 2–12.PubMedGoogle Scholar
  33. 33.
    Sen, N., Hara, M. R., Ahmad, A. S., Cascio, M. B., Kamiya, A., Ehmsen, J. T., Agrawal, N., Hester, L., Dore, S., Snyder, S. H., and Sawa, A. (2009) Neuron, 63, 81–91.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • Chong Li
    • 1
  • Jun-Jun Feng
    • 1
  • Yong-Ping Wu
    • 2
  • Guang-Yi Zhang
    • 1
    Email author
  1. 1.Jiangsu Province Key Laboratory of Brain Disease Bioinformation and Research Center of Biochemistry and Molecular BiologyXuzhou Medical CollegeXuzhouJiangsu, China
  2. 2.Jiangsu Province Key Laboratory of AnesthesiologyXuzhou Medical CollegeXuzhou, JiangsuChina

Personalised recommendations