Advertisement

Biochemistry (Moscow)

, Volume 77, Issue 6, pp 639–647 | Cite as

Hemostatic interference of Indian king cobra (Ophiophagus hannah) venom. Comparison with three other snake venoms of the subcontinent

  • Yashonandana J. Gowtham
  • M. S. Kumar
  • K. S. Girish
  • K. KemparajuEmail author
Article

Abstract

Unlike Naja naja, Bungarus caeruleus, Echis carinatus, and Daboia/Vipera russellii venoms, Ophiophagus hannah venom is medically ignored in the Indian subcontinent. Being the biggest poisonous snake, O. hannah has been presumed to inject several lethal doses of venom in a single bite. Lack of therapeutic antivenom to O. hannah bite in India makes any attempt to save the victim a difficult exercise. This study was initiated to compare O. hannah venom with the above said venoms for possible interference in hemostasis. Ophiophagus hannah venom was found to actively interfere in hemostatic stages such as fibrin clot formation, platelet activation/aggregation, and fibrin clot dissolution. It decreased partial thromboplastin time (aPTT), prothrombin time (PT), and thrombin clotting time (TCT). These activities are similar to that shown by E. carinatus and D. russellii venoms, and thus O. hannah venom was found to exert procoagulant activity through the common pathway of blood coagulation, while N. naja venom increased aPTT and TCT but not PT, and hence it was found to exert anticoagulant activity through the intrinsic pathway. Venoms of O. hannah, E. carinatus, and D. russellii lack plasminogen activation property as they do not hydrolyze azocasein, while they all show plasmin-like activity by degrading the fibrin clot. Although N. naja venom did not degrade azocasein, unlike other venoms, it showed feeble plasmin-like activity on fibrin clot. Venom of E. carinatus induced clotting of human platelet rich plasma (PRP), while the other three venoms interfered in agonist-induced platelet aggregation in PRP. Venom of O. hannah least inhibited the ADP induced platelet aggregation as compared to D. russellii and N. naja venoms. All these three venoms showed complete inhibition of epinephrine-induced aggregation at varied doses. However, O. hannah venom was unique in inhibiting thrombin induced aggregation.

Key words

O. hannah D. russellii E. carinatus N. naja fibri(noge)nolytic defibrinogenation platelet aggregation 

Abbreviations

aPTT

activated partial thromboplastin time

PRP

platelet rich plasma

PT

prothrombin time

TCT

thrombin clotting time

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chippaux, J. P. (1998) Bull WHO, 76, 515–524.PubMedGoogle Scholar
  2. 2.
    Brunda, G., and Sashidhar, R. B. (2007) Ind. J. Med. Res., 125, 661–668.Google Scholar
  3. 3.
    Lu, Q., Clemetson, J. M., and Clemetson, K. J. (2005) J. Thromb. Haemost., 3, 1791–1799.PubMedCrossRefGoogle Scholar
  4. 4.
    Kamiguti, A. S., Zuzel, M., and Theakston, R. D. G. (1998) Braz. J. Med. Biol. Res., 31, 853–862.PubMedCrossRefGoogle Scholar
  5. 5.
    Jagadeesha, D. K., Shashidhara Murthy, R., Girish, K. S., and Kemparaju, K. (2002) Toxicon, 40, 667–675.PubMedCrossRefGoogle Scholar
  6. 6.
    Raghavendra Gowda, C. D., Nataraju, A., Rajesh, R., Dhananjaya, B. L., Sharath, B. K., and Vishwanath, B. S. (2006) Comp. Biochem. Physiol., 143, 295–302.Google Scholar
  7. 7.
    Mahadeswaraswamy, Y. H., Devaraja, S., Kumar, M. S., Gowtham, Y. N. J., and Kemparaju, K. (2009) Ind. J. Biochem. Biophys., 46, 154–160.Google Scholar
  8. 8.
    Kumar, M. S., Devaraj, V. R., Vishwanath, B. S., and Kemparaju, K. (2009) J. Thromb. Thrombolysis, 29, 340–348.CrossRefGoogle Scholar
  9. 9.
    Jayanthi, G. P., and Gowda, T. V. (1990) Toxicon, 28, 65–74.PubMedCrossRefGoogle Scholar
  10. 10.
    Prasad, B. N., Kemparaju, K., Bhatt, K. G., and Gowda, T. V. (1996) Toxicon, 34, 1173–1185.PubMedCrossRefGoogle Scholar
  11. 11.
    Kemparaju, K., Krishnakanth, T. P., and Veerabasappa Gowda, T. (1999) Toxicon, 37, 1659–1671.PubMedCrossRefGoogle Scholar
  12. 12.
    Rudrammaji, L. M., Machiah, K. D., Kantha, T. P., and Gowda, T. V. (2001) Mol. Cell. Biochem., 219, 39–44.PubMedCrossRefGoogle Scholar
  13. 13.
    Satish, S., Tejaswini, J., Krishnakantha, T. P., and Gowda, T. V. (2004) Biochimie, 86, 203–210.PubMedCrossRefGoogle Scholar
  14. 14.
    Gomes, A., and Pallabi, De. (1999) Biochem. Biophys. Res. Commun., 266, 488–491.PubMedCrossRefGoogle Scholar
  15. 15.
    Laemmli, U. K. (1970) Nature, 227, 680–685.PubMedCrossRefGoogle Scholar
  16. 16.
    Quick, A. J. (1935) J. Biol. Chem., 109, LXXiii–LXXiV.Google Scholar
  17. 17.
    Evans, H. J. (1981) Biochim. Biophys. Acta, 660, 219–226.PubMedGoogle Scholar
  18. 18.
    Gao, R., Zhang, Y., Meng, Q. X., Lee, W. H., Li, D. S., Xiong, Y. L., and Wang, W. Y. (1998) Toxicon, 36, 457–467.PubMedCrossRefGoogle Scholar
  19. 19.
    Denis, C., Methia, N., and Frenette, P. S. (1998) Proc. Natl. Acad. Sci. USA, 95, 9524–9529.PubMedCrossRefGoogle Scholar
  20. 20.
    Loria, G. D., Rucavado, A., and Kamiguti, A. S. (2003) Arch. Biochem. Biophys., 418, 13–24.PubMedCrossRefGoogle Scholar
  21. 21.
    Gene, J. A., Roy, A., and Rojas, G. (1989) Toxicon, 27, 841–848.PubMedCrossRefGoogle Scholar
  22. 22.
    Rajesh, R., Raghavendra Gowda, C. D., and Nataraju, A. (2005) Toxicon, 46, 84–92.PubMedCrossRefGoogle Scholar
  23. 23.
    Chakrabarty, D., Datta, K., Gomes, A., and Bhattacharyya, D. (2000) Toxicon, 38, 1475–1490.PubMedCrossRefGoogle Scholar
  24. 24.
    Born, G. V., and Cross, M. J. (1963) Nature, 197, 974–976.PubMedCrossRefGoogle Scholar
  25. 25.
    Lowry, O. H., Rosenbrough, N. J., Farr, A. L., and Randall, R. J. (1951) J. Biol. Chem., 193, 265–275.PubMedGoogle Scholar
  26. 26.
    Mahadeswaraswamy, Y. H., Nagaraju, S., Girish, K. S., and Kemparaju, K. (2008) Phytother. Res., 22, 963–969.PubMedCrossRefGoogle Scholar
  27. 27.
    Yamada, D., and Morita, T. (1999) Thromb. Res., 94, 221–226.PubMedCrossRefGoogle Scholar
  28. 28.
    Gowda, D. C., Jackson, C. M., Hensley, P., and Davidson, E. A. (1994) J. Biol. Chem., 269, 10644–10650.PubMedGoogle Scholar
  29. 29.
    Nakayama, D., Ben Ammar, Y., and Takeda, S. (2009) Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun., 65, 1306–1308.PubMedCrossRefGoogle Scholar
  30. 30.
    Lee, W. H., Zhang, Y., Wang, W. Y., Xiong, Y. L., and Gao, R. (1995) Toxicon, 33, 1263–1276.PubMedCrossRefGoogle Scholar
  31. 31.
    Kornalik, F., and Blomback, B. (1975) Thromb. Res., 6, 57–63.PubMedCrossRefGoogle Scholar
  32. 32.
    Mukherjee, A. K. (2008) Toxicon, 51, 923–933.PubMedCrossRefGoogle Scholar
  33. 33.
    Kumar, M. S., Girish, K. S., Vishwanath, B. S., and Kemparaju, K. (2011) Ann. Hematol., 90, 569–577.PubMedCrossRefGoogle Scholar
  34. 34.
    Sundell, I. B., Ranby, M., Zuzel, M., Robinson, K. A., and Theakston, R. D. G. (2003) Toxicon, 42, 239–247.PubMedCrossRefGoogle Scholar
  35. 35.
    Jasti, J., Paramasivam, M., Srinivasan, A., and Singh, T. P. (2004) J. Mol. Biol., 335, 167–176.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • Yashonandana J. Gowtham
    • 1
  • M. S. Kumar
    • 1
    • 2
  • K. S. Girish
    • 1
  • K. Kemparaju
    • 1
    Email author
  1. 1.Department of Studies in BiochemistryUniversity of MysoreManasagangothri, MysoreIndia
  2. 2.Department of BiochemistryGovernment College for WomenMandyaIndia

Personalised recommendations