Advertisement

Biochemistry (Moscow)

, Volume 77, Issue 6, pp 603–608 | Cite as

Rapid and massive green fluorescent protein production leads to formation of protein Y-bodies in plant cells

  • T. V. Komarova
  • E. V. Sheval
  • D. V. Pozdyshev
  • V. S. Kolesnikova
  • Yu. L. DorokhovEmail author
Article

Abstract

Although high level of recombinant protein production can be achieved via transient expression in plant cells, the mechanism by which tolerance to the presence of recombinant protein is acquired remains unclear. Here we show that green fluorescent protein (GFP) encoded by an intron-optimized tobacco mosaic viral vector formed large membraneless GFP bodies called Y-bodies that demonstrated mainly perinuclear localization. The Y-bodies were heterogeneous in size, approaching the size of the cell nucleus. Experiments with extracted GFP and live cell imaging showed that Y-bodies included actively fluorescent, non-aggregated, tightly packed GFP molecules. The plant cells probably formed Y-bodies to exclude the recombinant protein from normal physiological turnover.

Key words

Agrobacterium tumefaciens green fluorescent protein (GFP) viral vector Y-bodies tobacco mosaic virus transient expression 

Abbreviations

GFP

green fluorescent protein

IC

intermediate construct

PrAct2

Arabidopsis thaliana act2 gene promotor

TMV

tobacco mosaic virus

MP

movement protein

PB

protein body

UTR

untranslated region

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Marillonnet, S., Thoeringer, C., Kandzia, R., Klimyuk, V., and Gleba, Y. (2005) Nat. Biotechnol., 23, 718–723.PubMedCrossRefGoogle Scholar
  2. 2.
    Dorokhov, Y. L., Sheveleva, A. A., Frolova, O. Y., et al. (2007) Tuberculosis (Edinb.), 87, 218–224.CrossRefGoogle Scholar
  3. 3.
    Azhakanandam, K., Weissinger, S. M., Nicholson, J. S., Qu, R., and Weissinger, A. K. (2007) Plant Mol. Biol., 63, 393–404.PubMedCrossRefGoogle Scholar
  4. 4.
    Lacorte, C., Lohuis, H., Goldbach, R., and Prins, M. (2007) Virus Res., 129, 80–86.PubMedCrossRefGoogle Scholar
  5. 5.
    Marillonnet, S., Giritch, A., Gils, M., Kandzia, R., Klimyuk, V., and Gleba, Y. (2004) Proc. Natl. Acad. Sci. USA, 101, 6852–6857.PubMedCrossRefGoogle Scholar
  6. 6.
    Hsu, S. T., Blaser, G., and Jackson, S. E. (2009) Chem. Soc. Rev., 38, 2951–2965.PubMedCrossRefGoogle Scholar
  7. 7.
    Huang, Z., Chen, Q., Hjelm, B., Arntzen, C., and Mason, H. (2009) Biotechnol. Bioeng., 103, 706–714.PubMedCrossRefGoogle Scholar
  8. 8.
    Conley, A. J., Joensuu, J. J., Menassa, R., and Brandle, J. E. (2009) BMC Biol., 7, 48.PubMedCrossRefGoogle Scholar
  9. 9.
    Joensuu, J. J., Conley, A. J., Lienemann, M., Brandle, J. E., Linder, M. B., and Menassa, R. (2010) Plant Physiol., 152, 622–633.PubMedCrossRefGoogle Scholar
  10. 10.
    Torrent, M., Llompart, B., Lasserre-Ramassamy, S., Llop-Tous, I., Bastida, M., Marzabal, P., Westerholm-Parvinen, A., Saloheimo, M., Heifetz, P., and Ludevid, M. D. (2009) BMC Biol., 7, 5.PubMedCrossRefGoogle Scholar
  11. 11.
    Giritch, A., Marillonnet, S., Engler, C., van Eldik, G., Botterman, J., Klimyuk, V., and Gleba, Y. (2006) Proc. Natl. Acad. Sci. USA, 103, 14701–14706.PubMedCrossRefGoogle Scholar
  12. 12.
    Ivanowski, D. (1903) Z. Pflanzenkr. Pflanzenschutz, 13, 1–41.Google Scholar
  13. 13.
    Esau, K., and Cronshaw, J. (1967) J. Cell. Biol., 33, 665–678.PubMedCrossRefGoogle Scholar
  14. 14.
    Hills, G. J., Plaskitt, K. A., Young, N. D., Dunigan, D. D., Watts, J. W., Wilson, T. M., and Zaitlin, M. (1987) Virology, 161, 488–496.PubMedCrossRefGoogle Scholar
  15. 15.
    Misteli, T. (2008) Nature, 456, 333–334.PubMedCrossRefGoogle Scholar
  16. 16.
    Baird, G. S., Zacharias, D. A., and Tsien, R. Y. (2000) Proc. Natl. Acad. Sci. USA, 97, 11984–11989.PubMedCrossRefGoogle Scholar
  17. 17.
    Yanushevich, Y. G., Staroverov, D. B., Savitsky, A. P., Fradkov, A. F., Gurskaya, N. G., Bulina, M. E., Lukyanov, K. A., and Lukyanov, S. A. (2002) FEBS Lett., 511, 11–14.PubMedCrossRefGoogle Scholar
  18. 18.
    Hartl, F. U., and Hayer-Hartl, M. (2002) Science, 295, 1852–1858.PubMedCrossRefGoogle Scholar
  19. 19.
    Hatakeyama, S., and Nakayama, K. I. (2003) J. Biochem., 134, 1–8.PubMedCrossRefGoogle Scholar
  20. 20.
    Esser, C., Alberti, S., and Hohfeld, J. (2004) Biochim. Biophys. Acta, 1695, 171–188.PubMedCrossRefGoogle Scholar
  21. 21.
    Robinson, D. G., Oliviusson, P., and Hinz, G. (2005) Traffic, 6, 615–625.PubMedCrossRefGoogle Scholar
  22. 22.
    Misteli, T. (2001) J. Cell Biol., 155, 181–185.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • T. V. Komarova
    • 1
    • 2
  • E. V. Sheval
    • 1
  • D. V. Pozdyshev
    • 1
    • 2
  • V. S. Kolesnikova
    • 1
  • Yu. L. Dorokhov
    • 1
    • 2
    Email author
  1. 1.Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia
  2. 2.Vavilov Institute of General GeneticsRussian Academy of SciencesMoscowRussia

Personalised recommendations