Advertisement

Biochemistry (Moscow)

, Volume 77, Issue 4, pp 411–417 | Cite as

Molecular characterization of gap region in 28S rRNA molecules in brine shrimp Artemia parthenogenetica and planarian Dugesia japonica

  • Shuhong Sun
  • Hui Xie
  • Yan SunEmail author
  • Jing Song
  • Zhi LiEmail author
Article

Abstract

In most insects and some other protostomes, a small stretch of nucleotides can be removed from mature 28S rRNA molecules, which could create two 28S rRNA subunits (28Sα and 28Sβ). Thus, during electrophoresis, the rRNA profiles of these organisms may differ significantly from the standard benchmark since the two subunits co-migrate with the 18S rRNA. To understand the structure and mechanism of the atypical 28S rRNA molecule, partial fragments of 28Sα and 28Sβ in brine shrimp Artemia parthenogenetica and planarian Dugesia japonica were cloned using a modified technology based on terminal transferase. Alignment with the corresponding sequences of 28S rDNAs indicates that there are 41 nucleotides in A. parthenogenetica and 42 nucleotides in D. japonica absent from the mature rRNAs. The AU content of the gap sequences of D. japonica and A. parthenogenetica is high. Both the gaps may form stem-loop structure. In D. japonica a UAAU cleavage signal is identified in the loop, but it is absent in A. parthenogenetica. Thus, it is proposed that the gap processing of 28S rRNA was a late enzyme-dependent cleavage event in the rRNA maturational process based on the AU rich gap sequence and the formation of the stem-loop structure to expose the processing segment, while the deletion of the gap region would not affect the structure and function of the 28S rRNA molecule.

Key words

28S rRNA gap region fragmentation Artemia parthenogenetica Dugesia japonica 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ishikawa, H. (1973) Comp. Biochem. Physiol. B, 46, 217–227.PubMedCrossRefGoogle Scholar
  2. 2.
    Greenberg, J. R. (1969) J. Mol. Biol., 46, 85–98.PubMedCrossRefGoogle Scholar
  3. 3.
    Applebaum, S. W., Ebstein, R. P., and Wyatt, G. R. (1966) J. Mol. Biol., 21, 29–41.PubMedCrossRefGoogle Scholar
  4. 4.
    Ishikawa, H., and Newburgh, R. W. (1972) J. Mol. Biol., 64, 135–144.PubMedCrossRefGoogle Scholar
  5. 5.
    Ware, V. C., Renkawitz, R., and Gerbi, S. A. (1985) Nucleic Acids Res., 13, 3581–3597.PubMedCrossRefGoogle Scholar
  6. 6.
    Winnebeck, E. C., Millar, C. D., and Warman, G. R. (2010) J. Insect. Sci, 10, 159.PubMedCrossRefGoogle Scholar
  7. 7.
    Shine, J., and Dalgarno, L. (1973) J. Mol. Biol., 75, 57–72.PubMedCrossRefGoogle Scholar
  8. 8.
    Stevens, A. R., and Pachler, P. F. (1972) J. Mol. Biol., 66, 225–237.PubMedCrossRefGoogle Scholar
  9. 9.
    Eckert, W. A., Kaffenberger, W., Krohne, G., and Franke, W. W. (1978) Eur. J. Biochem., 87, 607–616.PubMedCrossRefGoogle Scholar
  10. 10.
    Fujiwara, H., Ogura, T., Takada, N., Miyajima, N., Ishikawa, H., and Maekawa, H. (1984) Nucleic Acids Res., 12, 6861–6869.PubMedCrossRefGoogle Scholar
  11. 11.
    Lava-Sanchez, P. A., and Puppo, S. (1975) J. Mol. Biol., 95, 9–20.PubMedCrossRefGoogle Scholar
  12. 12.
    Delanversin, G., and Jacq, B. (1983) CR Seances Acad. Sci. III, 296, 1041–1044.Google Scholar
  13. 13.
    Haraszthy, V. I., Sunday, G. J., Bobek, L. A., Motley, T. S., Preus, H., and Zambon, J. J. (1992) J. Dental Res., 71, 1561–1568.CrossRefGoogle Scholar
  14. 14.
    Van Keulen, H., Mertz, P. M., LoVerde, P. T., Shi, H., and Rekosh, D. M. (1991) Mol. Biochem. Parasitol., 45, 205–214.PubMedCrossRefGoogle Scholar
  15. 15.
    Zarlenga, D. S., and Dame, J. B. (1992) Mol. Biochem. Parasitol., 51, 281–289.PubMedCrossRefGoogle Scholar
  16. 16.
    Basile-Borgia, A. E., Dunbar, D. A., and Ware, V. C. (2005) Insect. Mol. Biol., 14, 523–536.PubMedCrossRefGoogle Scholar
  17. 17.
    De Rijk, P., van de Peer, Y., Chapelle, S., and de Wachter, R. (1994) Nucleic Acids Res., 22, 3495–3501.PubMedCrossRefGoogle Scholar
  18. 18.
    Clark, C. G., Tague, B. W., Ware, V. C., and Gerbi, S. A. (1984) Nucleic Acids Res., 12, 6197–6220.PubMedCrossRefGoogle Scholar
  19. 19.
    Ishikawa, H. (1977) Comp. Biochem. Physiol. B, 58, 1–7.PubMedGoogle Scholar
  20. 20.
    Melen, G. J., Pesce, C. G., Rossi, M. S., and Kornblihtt, A. R. (1999) EMBO J., 18, 3107–3118.PubMedCrossRefGoogle Scholar
  21. 21.
    Ogino, K., Eda-Fujiwara, H., Fujiwara, H., and Ishikawa, H. (1990) J. Mol. Evol., 30, 509–513.PubMedCrossRefGoogle Scholar
  22. 22.
    Fujiwara, H., and Ishikawa, H. (1986) Nucleic Acids Res., 14, 6393–6401.PubMedCrossRefGoogle Scholar
  23. 23.
    Nelles, L., van Broeckhoven, C., de Wachter, R., and Vandenberghe, A. (1984) Naturwissenschaften, 71, 634–635.PubMedCrossRefGoogle Scholar
  24. 24.
    Ware, V. C., Tague, B. W., Clark, C. G., Gourse, R. L., Brand, R. C., and Gerbi, S. A. (1983) Nucleic Acids Res., 11, 7795–7817.PubMedCrossRefGoogle Scholar
  25. 25.
    Pavlakis, G. N., Jordan, B. R., Wurst, R. M., and Vournakis, J. N. (1979) Nucleic Acids Res., 7, 2213–2238.PubMedCrossRefGoogle Scholar
  26. 26.
    Park, Y. J., and Fallon, A. M. (1990) Insect. Biochem., 20, 1–11.CrossRefGoogle Scholar
  27. 27.
    Ben-Shem, A., Garreau de Loubresse, N., Melnikov, S., Jenner, L., Yusupova, G., and Yusupov, M. (2011) Science, 334, 1524–1529.PubMedCrossRefGoogle Scholar
  28. 28.
    Taylor, D. J., Devkota, B., Huang, A. D., Topf, M., Narayanan, E., Sali, A., Harvey, S. C., and Frank, J. (2009) Structure, 17, 1591–1604.PubMedCrossRefGoogle Scholar
  29. 29.
    Webb, C. J., and Zakian, V. A. (2008) Nat. Struct. Mol. Biol., 15, 34–42.PubMedCrossRefGoogle Scholar
  30. 30.
    Zaug, A. J., Linger, J., and Cech, T. R. (1996) Nucleic Acids Res., 24, 532–533.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.College of Life SciencesShaanxi Normal UniversityXi’anShaanxi, P.R. China

Personalised recommendations