Advertisement

Biochemistry (Moscow)

, Volume 77, Issue 4, pp 372–377 | Cite as

Properties of recombinant ATP-dependent fructokinase from the halotolerant methanotroph Methylomicrobium alcaliphilum 20Z

  • S. Y. But
  • O. N. Rozova
  • V. N. Khmelenina
  • A. S. Reshetnikov
  • Y. A. TrotsenkoEmail author
Article

Abstract

In the cluster of genes for sucrose biosynthesis and cleavage in Methylomicrobium alcaliphilum 20Z, a gene whose encoded sequence showed high similarity to sugar kinases of the ribokinase family was found. By heterologous expression of this gene in Escherichia coli cells and following metal chelate affinity chromatography, the electrophoretically homogenous recombinant enzyme with six histidine residues on the C-end was obtained. The enzyme catalyzes ATP-dependent phosphorylation of fructose into fructose-6-phosphate but is not active with other sugars as phosphoryl acceptors. The fructokinase of M. alcaliphilum 20Z is most active in the presence of Mn2+ at pH 9.0 and 60°C, being inhibited by ADP (K i = 2.50 ± 0.03 mM). The apparent K m values for fructose and ATP are 0.26 and 1.3 mM, respectively; the maximal activity is 141 U/mg protein. The enzyme shows the highest similarity of translated amino acid sequence with putative fructokinases of methylotrophic and autotrophic proteobacteria whose fruK gene is located in the gene cluster of sucrose biosynthesis. The involvement of fructokinase in sucrose metabolism in M. alcaliphilum 20Z and other methanotrophs and autotrophs is discussed.

Key words

fructokinases sucrose metabolism methylotrophic bacteria Methylomicrobium alcaliphilum fruK 

Abbreviations

FruK

fructokinase

LB

Luria-Bertani medium

RuMP

ribulose monophosphate

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sabater, B., Sebastian, J., and Asensio, C. (1972) Biochim. Biophys. Acta, 284, 414–420.PubMedGoogle Scholar
  2. 2.
    Sabater, B., and Delafuente, G. (1975) Biochim. Biophys. Acta, 377, 258–270.PubMedGoogle Scholar
  3. 3.
    Fennington, G. J., Jr., and Hughes, T. A. (1996) Microbiology (UK), 142, 321–330.Google Scholar
  4. 4.
    Zembrzuski, B., Chilco, P., Liu, X. L., Liu, J., Conway, T., and Scopes, R. (1992) J. Bacteriol., 174, 3455–3460.PubMedGoogle Scholar
  5. 5.
    Thompson, J., Sackett, D. L., and Donkersloot, J. A. (1991) J. Biol. Chem., 266, 22626–22633.PubMedGoogle Scholar
  6. 6.
    Reid, S. J., Rafudeen, M. S., and Leat, N. G. (1999) Microbiology (UK), 145, 1461–1472.Google Scholar
  7. 7.
    Luesink, E. J., Marugg, J. D., Kuipers, O. P., and de Vos, W. M. (1999) J. Bacteriol., 181, 1924–1926.PubMedGoogle Scholar
  8. 8.
    Khmelenina, V. N., Kalyuzhnaya, M. G., Starostina, N. G., Suzina, N. E., and Trotsenko, Y. A. (1997) Cur. Microbiol., 35, 257–261.CrossRefGoogle Scholar
  9. 9.
    Khmelenina, V. N., Kalyuzhnaya, M., Suzina, N. E., Sakharovski, V. G., Trotsenko, Y. A., and Gottschalk, G. (1999) Arch. Microbiol., 172, 321–329.PubMedCrossRefGoogle Scholar
  10. 10.
    Bork, P., Sander, C., and Valencia, A. (1993) Protein Sci., 2, 31–40.PubMedCrossRefGoogle Scholar
  11. 11.
    Sigrell, J. A., Cameron, A. D., Jones, T. A., and Mowbray, S. J. (1997) Protein Sci., 6, 247–2476.Google Scholar
  12. 12.
    Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual, 2nd Edn., Cold Spring Harbor Laboratory, Cold Spring Harbor, N. Y.Google Scholar
  13. 13.
    Kalyuzhnaya, M., Khmelenina, V. N., Kotelnikova, S., Holmquist, L., Pedersen, K., and Trotsenko, Y. A. (1999) Syst. Appl. Microbiol., 22, 565–572.PubMedCrossRefGoogle Scholar
  14. 14.
    Laemmli, U. K. (1970) Nature, 227, 680–685.PubMedCrossRefGoogle Scholar
  15. 15.
    Shacterle, G. R., and Pollack, R. L. (1973) Anal. Biochem., 51, 654–657.CrossRefGoogle Scholar
  16. 16.
    Sambrook, J., and Russell, D. W. (2001) Molecular Cloning: A Laboratory Manual, 3rd Edn., Cold Spring Harbor Laboratory, N. Y.Google Scholar
  17. 17.
    Thomson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., and Higgins, D. G. (1997) Nucleic Acids Res., 24, 4876–4882.CrossRefGoogle Scholar
  18. 18.
    Tamura, K., Dudley, J., Nei, M., and Kumar, S. (2007) Molecular Biology and Evolution, 10.1093/molbev/msm092.Google Scholar
  19. 19.
    Medvedkova, K. A., Khmelenina, V. N., and Trotsenko, Y. A. (2007) Mikrobiologiya, 76, 567–569.Google Scholar
  20. 20.
    Sigrell, J. A., Cameron, A. D., Jones, T. A., and Mowbray, S. L. (1998) Structure, 6, 183–193.PubMedCrossRefGoogle Scholar
  21. 21.
    Qiuhao, Q., Sung-Jae, L., and Winfried, B. (2004) Extremophiles, 8, 301–308.Google Scholar
  22. 22.
    Caescu, C., Vidal, O., Krzewinski, O., Artenie, V., and Bouquelet, S. (2004) J. Bacteriol., 186, 6515–6525.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • S. Y. But
    • 1
  • O. N. Rozova
    • 1
  • V. N. Khmelenina
    • 1
  • A. S. Reshetnikov
    • 1
  • Y. A. Trotsenko
    • 1
    Email author
  1. 1.Skryabin Institute of Biochemistry and Physiology of MicroorganismsRussian Academy of SciencesPushchino, Moscow RegionRussia

Personalised recommendations