Advertisement

Biochemistry (Moscow)

, Volume 77, Issue 4, pp 354–361 | Cite as

Programmed cell death in plants: Protective effect of tetraphenylphosphonium and tetramethylrhodamine cations used as transmembrane quinone carriers

  • L. A. Vasil’ev
  • D. B. Kiselevsky
  • E. V. Dzyubinskaya
  • A. V. Nesov
  • V. D. SamuilovEmail author
Article

Abstract

Tetraphenylphosphonium (TPP+) and tetramethylrhodamine ethyl ester (TMRE+) cations used as transmembrane carriers of ubiquinone (MitoQ) and plastoquinone (SkQ, SkQR) in mitochondria prevented at nanomolar concentrations the chitosanor H2O2-induced destruction of the nucleus in epidermal cells of epidermis isolated from pea leaves. The protective effect of the cations was potentiated by palmitate. Penetrating anions of tetraphenylboron (TB) and phenyl dicarbaundecaborane also displayed protective effects at micromolar concentrations; the effect of TB was potentiated by NH4Cl. It is proposed that the protective effect of the penetrating cations and anions against chitosan is due to suppression of the generation of reactive oxygen species in mitochondria as a result of the protonophoric effect of the cations plus fatty acids and the anions plus NH 4 + . Phenol was suitable as the electron donor for H2O2 reduction catalyzed by horseradish peroxidase, preventing the destruction of cell nuclei. The penetrating cations and anions, SkQ1, and SkQR1 did not maintain the peroxidase or peroxidase/oxidase reactions measured by their suitability as electron donors for H2O2 reduction or by the oxidation of exogenous NADH.

Key words

penetrating ions tetraphenylphosphonium tetramethylrhodamine ethyl ester tetraphenylboron anion phenyl dicarbaundecaborane anion cell nucleus destruction protective effect plant epidermal cells chitosan CN 

Abbreviations

CCCP

carbonyl cyanide m-chlorophenylhydrazone

C12TPP+

dodecyltriphenylphosphonium

DCFH-DA

2′,7′-dichlorofluorescin diacetate

DCP

2,4-dichlorophenol

DNP

2,4-dinitrophenol

DPI+

diphenyleneiodonium

DTPP+

decyltriphenylphosphonium

ECs

epidermal cells

GCs

guard cells

MB

methylene blue

PCB

phenyl dicarbaundecaborane

PCD

programmed cell death

ROS

reactive oxygen species

SkQ1

10-(6′-plastoquinonyl)decyltriphenylphosphonium

SkQ3

10-(6′-methylplastoquinonyl)decyltriphenylphosphonium

SkQR1

10-(6′-plastoquinonyl)decylrhodamine 19

TB

tetraphenylboron

TMRE+

tetramethylrhodamine ethyl ester

TPP+

tetraphenylphosphonium

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mittler, R., Vanderauwera, S., Gollery, M., and van Breusegem, F. (2004) Trends Plant Sci., 9, 490–498.PubMedCrossRefGoogle Scholar
  2. 2.
    Samuilov, V. D., Lagunova, E. M., Beshta, O. E., and Kitashov, A. V. (2000) Biochemistry (Moscow), 65, 696–702.Google Scholar
  3. 3.
    Samuilov, V. D., Lagunova, E. M., Dzyubinskaya, E. V., Izyumov, D. S., Kiselevsky, D. B., and Makarova, Ya. V. (2002) Biochemistry (Moscow), 67, 627–634.CrossRefGoogle Scholar
  4. 4.
    Tena, G., Asai, T., Chiu, W.-L., and Sheen, J. (2001) Curr. Opin. Plant Biol., 4, 392–400.PubMedCrossRefGoogle Scholar
  5. 5.
    Vasil’ev, L. A., Dzyubinskaya, E. V., Zinovkin, R. A., Kiselevsky, D. B., Lobysheva, N. V., and Samuilov, V. D. (2009) Biochemistry (Moscow), 74, 1035–1043.CrossRefGoogle Scholar
  6. 6.
    Samuilov, V. D., Kiselevsky, D. B., Shestak, A. A., Nesov, A. V., and Vasil’ev, L. A. (2008) Biochemistry (Moscow), 73, 1076–1084.CrossRefGoogle Scholar
  7. 7.
    Skulachev, V. P. (2006) Apoptosis, 11, 473–485.PubMedCrossRefGoogle Scholar
  8. 8.
    Møller, I. M. (2001) Annu. Rev. Plant Physiol. Plant Mol. Biol., 52, 561–591.PubMedCrossRefGoogle Scholar
  9. 9.
    Puntarulo, S., Sanchez, R. A., and Boveris, A. (1988) Plant Physiol., 86, 626–630.PubMedCrossRefGoogle Scholar
  10. 10.
    Purvis, A. C., Shewfelt, R. L., and Gegogeine, J. W. (1995) Physiol. Plant., 94, 743–749.CrossRefGoogle Scholar
  11. 11.
    Rich, P. R., Boveris, A., Bonner, W. D., and Moore, A. L. (1976) Biochem. Biophys. Res. Commun., 71, 695–703.PubMedCrossRefGoogle Scholar
  12. 12.
    Purvis, A. C. (1997) Physiol. Plant., 100, 165–170.CrossRefGoogle Scholar
  13. 13.
    Braidot, E., Petrussa, E., Vianello, A., and Macri, F. (1999) FEBS Lett., 451, 347–350.PubMedCrossRefGoogle Scholar
  14. 14.
    Vercesi, A. E., Borecky, J., Maia, I. G., Arruda, P., Cuccovia, I. M., and Chaimovich, H. (2006) Annu. Rev. Plant Biol., 57, 384–404.CrossRefGoogle Scholar
  15. 15.
    Apel, K., and Hirt, H. (2004) Annu. Rev. Plant Biol., 55, 373–399.PubMedCrossRefGoogle Scholar
  16. 16.
    Almargo, L., Ros, L. V. G., Belchi-Navarro, S., Bru, R., Barcelo, A. R., and Pedreno, M. A. (2008) J. Exp. Bot., 60, 377–390.Google Scholar
  17. 17.
    Hetfield, R., and Vermerris, V. (2001) Plant Physiol., 126, 1351–1357.CrossRefGoogle Scholar
  18. 18.
    Samuilov, V. D., Vasil’ev, L. A., Dzyubinskaya, E. V., Kiselevsky, D. B., and Nesov, A. V. (2010) Biochemistry (Moscow), 75, 257–263.CrossRefGoogle Scholar
  19. 19.
    Vasil’ev, L. A., Dzyubinskaya, E. V., Kiselevsky, D. B., Shestak, A. A., and Samuilov, V. D. (2011) Biochemistry (Moscow), 76, 1120–1130.CrossRefGoogle Scholar
  20. 20.
    Skulachev, V. P. (2007) Biochemistry (Moscow), 72, 1385–1396.CrossRefGoogle Scholar
  21. 21.
    Kiselevsky, D. B., Kyznetsova, Yu. E., Vasil’ev, L. A., Lobysheva, N. V., Zinovkin, R. A., Nesov, A. V., Shestak, A. A., and Samuilov, V. D. (2010) Biochemistry (Moscow), 75, 614–622.CrossRefGoogle Scholar
  22. 22.
    Korshunov, S. S., Skulachev, V. P., and Starkov, A. A. (1997) FEBS Lett., 416, 15–18.PubMedCrossRefGoogle Scholar
  23. 23.
    Skulachev, V. P., Sharaf, A. A., and Liberman, E. A. (1967) Nature, 216, 718–719.PubMedCrossRefGoogle Scholar
  24. 24.
    Severin, F. F., Severina, I. I., Antonenko, Yu. N., et al. (2010) Proc. Natl. Acad. Sci. USA, 107, 663–668.PubMedCrossRefGoogle Scholar
  25. 25.
    Samuilov, V. D., Kiselevsky, D. B., Sinitsyn, S. V., Shestak, A. A., Lagunova, E. M., and Nesov, A. V. (2006) Biochemistry (Moscow), 71, 384–394.CrossRefGoogle Scholar
  26. 26.
    Bender, A., Hajieva, P., and Moosmann, B. (2008) Proc. Natl. Acad. Sci. USA, 105, 16496–16501.PubMedCrossRefGoogle Scholar
  27. 27.
    Skulachev, V. P. (2009) Biochemistry (Moscow), 74, 1400–1403.CrossRefGoogle Scholar
  28. 28.
    Yamazaki, I., and Yokota, K. (1973) Mol. Cell. Biochem., 2, 39–52.PubMedCrossRefGoogle Scholar
  29. 29.
    Yokota, K., and Yamazaki, I. (1977) Biochemistry, 16, 1913–1920.PubMedCrossRefGoogle Scholar
  30. 30.
    Hauser, M. J. B., and Olsen, L. F. (1998) Biochemistry, 37, 2458–2469.PubMedCrossRefGoogle Scholar
  31. 31.
    Halliwell, B. (1978) Planta, 140, 81–88.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • L. A. Vasil’ev
    • 1
  • D. B. Kiselevsky
    • 1
  • E. V. Dzyubinskaya
    • 1
  • A. V. Nesov
    • 1
  • V. D. Samuilov
    • 1
    Email author
  1. 1.Department of Immunology, Faculty of BiologyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations