Advertisement

Biochemistry (Moscow)

, Volume 77, Issue 4, pp 342–345 | Cite as

Leader sequences of eukaryotic mRNA can be simultaneously bound to initiating 80S ribosome and 40S ribosomal subunit

  • E. A. Sogorin
  • N. E. Shirokikh
  • A. M. Ibragimova
  • V. D. Vasiliev
  • S. Ch. Agalarov
  • A. S. SpirinEmail author
Accelerated Publication

Abstract

Binding of mRNA leader sequences to ribosomes was studied in conditions of a cell-free translation system based on wheat germ extract. Leader sequence of TMV mRNA (the so-called omega-RNA sequence) was able to bind simultaneously 80S ribosome and 40S ribosomal subunit. It was found that nucleotide substitutions in omega-RNA resulting in destabilization of RNA structure have no effect on the complex formation with both 80S ribosome and 40S ribosomal subunit. Leader sequence of globin mRNA is also able to form a similar joint complex. It is supposed that the ability of mRNA leader sequences to bind simultaneously 80S ribosome and 40S subunit is independent of leader nature and may reflect previously unknown eukaryotic mechanisms of translation initiation.

Key words

omega-RNA initiation of protein biosynthesis ribosomal complexes electron microscopy of ribosomes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Coulet, P., Lomonosoff, G. P., Butler, P. J. G., Akam, M. E., Gait, M. J., and Karn, J. (1982) Proc. Natl. Acad. Sci. USA, 79, 5818–5822.CrossRefGoogle Scholar
  2. 2.
    Gallie, D. R., Sleat, D. E., Watts, J. W., Turner, P. C., and Wilson, T. M. (1987) Nucleic Acids Res., 15, 3257–3273.PubMedCrossRefGoogle Scholar
  3. 3.
    Sleat, D. E., Gallie, D. R., Jefferson, R. A., Bevan, M. W., Turner, P. C., and Wilson, T. M. (1987) Gene, 60, 217–225.PubMedCrossRefGoogle Scholar
  4. 4.
    Sleat, D. E., Hull, R., Turner, P. C., and Wilson, T. M. (1988) Eur. J. Biochem., 175, 75–86.PubMedCrossRefGoogle Scholar
  5. 5.
    Takamatsu, N., Watanabe, Y., Iwasaki, T., Shiba, T., Meshi, T., and Okada, Y. (1991) J. Virol., 5, 1619–1622.Google Scholar
  6. 6.
    Kovtun, A. A., Shirokikh, N. E., Gudkov, A. T., and Spirin, A. S. (2007) Biochem. Biophys. Res. Commun., 358, 368–372.PubMedCrossRefGoogle Scholar
  7. 7.
    Efimov, A. V., and Spirin, A. S. (2009) Biochem. Biophys. Res. Commun., 388, 127–130.PubMedCrossRefGoogle Scholar
  8. 8.
    Shirokikh, N. E., Agalarov, S. Ch., and Spirin, A. S. (2010) Biochemistry (Moscow), 75, 405–411.CrossRefGoogle Scholar
  9. 9.
    Agalarov, S. C., Sogorin, E. A., Shirokikh, N. E., and Spirin, A. S. (2011) Biochem. Biophys. Res. Commun., 404, 250–253.PubMedCrossRefGoogle Scholar
  10. 10.
    Seki, M., Carninci, P., Nishiyama, Y., Hayashizaki, Y., and Shinozaki, K. (1998) Plant J., 15, 797–720.CrossRefGoogle Scholar
  11. 11.
    Shirokov, V. A., Kommer, A., Kolb, V. A., and Spirin, A. S. (2007) Methods Mol. Biol., 375, 19–55.PubMedCrossRefGoogle Scholar
  12. 12.
    Valentine, R. S., Shapiro, B. M., and Stadman, E. R. (1968) Biochemistry, 7, 2143–2152.PubMedCrossRefGoogle Scholar
  13. 13.
    Konarska, M., Filipowicz, W., Domdey, H., and Gross, H. J. (1981) Eur. J. Biochem., 114, 221–227.PubMedCrossRefGoogle Scholar
  14. 14.
    Tyc, K., Konarska, M., Gross, H. J., and Filipowicz, W. (1984) Eur. J. Biochem., 140, 503–511.PubMedCrossRefGoogle Scholar
  15. 15.
    Baralle, F. E. (1977) Cell, 10, 549–558.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • E. A. Sogorin
    • 1
  • N. E. Shirokikh
    • 1
  • A. M. Ibragimova
    • 1
  • V. D. Vasiliev
    • 1
  • S. Ch. Agalarov
    • 1
  • A. S. Spirin
    • 1
    Email author
  1. 1.Institute of Protein ResearchRussian Academy of SciencesPushchino, Moscow RegionRussia

Personalised recommendations