Biochemistry (Moscow)

, Volume 77, Issue 2, pp 171–179 | Cite as

Bicarbonate stabilizes isolated D1/D2/cytochrome b 559 complex of photosystem 2 against thermoinactivation

  • O. V. PobegutsEmail author
  • T. N. Smolova
  • V. V. Klimov


It has been shown that thermoinactivation of the isolated D1/D2/cytochrome b 559 complex (RC) of photosystem 2 (PS-2) from pea under anaerobic conditions at 35°C in 20 mM Tris-HCl buffer (pH 7.2) depleted of HCO 3 , with 35 mM NaCl and 0.05% n-dodecyl-β-maltoside, results in a decrease in photochemical activity measured by photoreduction of the PS-2 primary electron acceptor, pheophytin (by 50% after 3 min of heating), which is accompanied by aggregation of the D1 and D2 proteins. Bicarbonate, formate, and acetate anions added to the sample under these conditions differently influence the maintenance of photochemical activity: a 50% loss of photochemical activity occurs in 11.5 min of heating in the presence of bicarbonate and in 4 and 4.6 min in the presence of formate and acetate, respectively. The addition of bicarbonate completely prevents aggregation of the D1 and D2 proteins as opposed to formate and acetate (their presence has no effect on the aggregation during thermoinactivation). Since the isolated RCs have neither inorganic Mn/Ca-containing core of the water-oxidizing complex nor nonheme Fe2+, it is supposed that bicarbonate specifically interacts with the hydrophilic domains of the D1 and D2 proteins, which prevents their structural modification that is a signal for aggregation of these proteins and the loss of photochemical activity.

Key words

photosystem 2 isolated D1/D2/cytochrome b559 complex bicarbonate thermoinactivation 





photosystem 2


reaction center


N,N,N,N-tetramethyl-p-phenylenediamine dihydrochloride


water-oxidizing complex


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Xiong, J., Subramanigm, S., and Govindjee (1996) Protein Sci., 5, 2054–2073.PubMedCrossRefGoogle Scholar
  2. 2.
    Ferreira, K. N., Iverson, T. M., Maghlaoui, K., Barber, J., and Iwata, S. (2004) Science, 303, 1981–1997.CrossRefGoogle Scholar
  3. 3.
    Warburg, O., and Krippahl, G. (1958) Z. Natirforsch., 13b, 509–514.Google Scholar
  4. 4.
    Wydrzynski, T. J., and Govindjee (1975) Biochim. Biophys. Acta, 387, 403–408.PubMedCrossRefGoogle Scholar
  5. 5.
    Stemler, A. J. (2002) Photosynth. Res., 73, 177–183.PubMedCrossRefGoogle Scholar
  6. 6.
    Diner, B. A., and Pertrouleas, V. (1990) Biochim. Biophys. Acta, 1015, 141–149.CrossRefGoogle Scholar
  7. 7.
    Klimov, V. V., Hulsebosch, R. J., Allakhverdiev, S. I., Wincencjusz, H., van Gorkom, H., and Hoff, A. J. (1997) Biochemistry, 36, 16277–16281.PubMedCrossRefGoogle Scholar
  8. 8.
    Allakhverdiev, S. I., Yruela, I., Picorel, R., and Klimov, V. V. (1997) Proc. Natl. Acad. Sci. USA, 94, 5050–5054.PubMedCrossRefGoogle Scholar
  9. 9.
    Kozlov, Yu. N., Zharmukhamedov, S. K., Tikhonov, K. G., DasGupta, J., Kazakova, A. A., Dismukes, G. C., and Klimov, V. V. (2004) Phys. Chem. Chem. Phys., 6, 9405–9411.CrossRefGoogle Scholar
  10. 10.
    Klimov, V. V., Baranov, S. V., and Allakhverdie, S. I. (1997) FEBS Lett., 418, 243–246.PubMedCrossRefGoogle Scholar
  11. 11.
    Baranov, S. V., Tyryshkin, A. M., Katz, D., Dismukes, G. C., Ananyev, G. M., and Klimov, V. V. (2004) Biochemistry, 43, 2070–2079.PubMedCrossRefGoogle Scholar
  12. 12.
    Klimov, V. V., Allakhverdiev, S. I., Feysiev, Ya. M., and Baranov, S. V. (1995) FEBS Lett., 336, 251–255.CrossRefGoogle Scholar
  13. 13.
    Shutova, T., Kenneweg, H., Buchta, J., Nikitina, J., Terentyev, V., Chemyshov, S., Andresson, B., Allakhverdiev, S. I., Klimov, V. V., Dau, H., Junge, W., and Samuelsson, G. (2008) EMBO J., 27, 782–791.PubMedCrossRefGoogle Scholar
  14. 14.
    Pobeguts, O. V., Smolova, T. N., Zastrizhnaya, O. M., and Klimov, V. V. (2007) Biochim. Biophys. Acta, 1767, 624–632.PubMedCrossRefGoogle Scholar
  15. 15.
    Pobeguts, O. V., Smolova, T. N., Timoshevsky, D. S., and Klimov, V. V. (2010) J. Photochem. Photobiol. B., 100, 30–37.PubMedCrossRefGoogle Scholar
  16. 16.
    Klimov, V. V., Allakhverdiev, S. I., Nishiyama, Y., Khorobrykh, A. A., and Murata, N. (2003) Funct. Plant Biol., 30, 797–803.CrossRefGoogle Scholar
  17. 17.
    Nanba, O., and Satoh, K. (1987) Proc. Natl. Acad. Sci. USA, 84, 481–485.CrossRefGoogle Scholar
  18. 18.
    Yamamoto, Y., Shimada, S., and Nishimuta, M. (1983) FEBS Lett., 151, 49–53.CrossRefGoogle Scholar
  19. 19.
    Vani, B., Saradhi, P. P., and Mohant, P. (2001) Ind. J. Biochem. Biophys., 38, 220–229.Google Scholar
  20. 20.
    Enam, I., Kitamura, M., Tomo, T., Isokawa, Y., Ohta, H., and Katoh, S. (1994) Biochim. Biophys. Acta, 1186, 52–58.CrossRefGoogle Scholar
  21. 21.
    Shutiliva, N., Semenova, G., Klimov, V., and Shnyrov, V. (1995) Biochem. Mol. Biol. Int., 35, 1233–1243.Google Scholar
  22. 22.
    Pospisil, P., Haumann, M., Dittmer, J., Sole, V. A., and Dau, H. (2003) Biophys. J., 84, 1370–1386.PubMedCrossRefGoogle Scholar
  23. 23.
    Komayama, K., Khatoon, M., Takenaka, D., Horie, J., Yamashita, A., Yoshioka, M., Nakayama, Y., Yoshida, M., Ohira, S., Morita, N., Velitchkova, M., Enami, I., and Yamamoto, Y. (2007) Biochim. Biophys. Acta, 1767, 838–846.PubMedCrossRefGoogle Scholar
  24. 24.
    Khristin, M. S., Nikitishena, O. V., Smolova, T. N., and Zastrizhnaya, O. M. (1997) Biol. Membr. (Moscow), 14, 133–141.Google Scholar
  25. 25.
    Klimov, V. V., Zharmukhamedov, S. K., De Las Rivas, J., and Barber, J. (1995) Photosynth. Res., 44, 67–74.CrossRefGoogle Scholar
  26. 26.
    Tavish, H., Picorel, R., and Seibert, M. (1989) Plant Physiol., 89, 452–456.CrossRefGoogle Scholar
  27. 27.
    Laemmli, U. K. (1970) Nature, 227, 680–685.PubMedCrossRefGoogle Scholar
  28. 28.
    Barber, J., Chapman, D. J., and Telfer, A. (1987) FEBS Lett., 220, 67–73.CrossRefGoogle Scholar
  29. 29.
    Danielius, R. V., Satoh, K., van Kan, P. J. M., Plijter, J. J., Nuijs, A. M., and van Gorcom, H. J. (1987) FEBS Lett., 213, 241–244.CrossRefGoogle Scholar
  30. 30.
    Klimov, V. V., Klevanik, A. V., Shuvalov, V. A., and Krasnovsky, A. A. (1977) FEBS Lett., 82, 183–186.PubMedCrossRefGoogle Scholar
  31. 31.
    Nikitishena, O. V., Smolova, T. N., Khatypov, R. A., Shkuropatov, A. Ya., and Klimov, V. V. (2002) Biochemistry (Moscow), 67, 364–371.CrossRefGoogle Scholar
  32. 32.
    Berry, J. A., and Bjokman, O. (1980) Annu. Rev. Plant Physiol., 31, 491–543.CrossRefGoogle Scholar
  33. 33.
    Suss, K. H., and Yordanov, I. T. (1986) Plant Physiol., 81, 192–199.PubMedCrossRefGoogle Scholar
  34. 34.
    Klimov, V. V., Baranov, S. V., and Allakhverdiev, S. I. (1997) FEBS Lett., 418, 243–246.PubMedCrossRefGoogle Scholar
  35. 35.
    Yoshioka, M., Uchida, S., Mori, H., Komayama, K., Ohira, S., Morita, N., Nakanishi, T., and Yamamoto, Y. (2006) J. Biol. Chem., 281, 21660–21669.PubMedCrossRefGoogle Scholar
  36. 36.
    Cao, J., and Govindjee (1990) Biochim. Biophys. Acta, 1015, 180–188.PubMedCrossRefGoogle Scholar
  37. 37.
    Yamane, Y., Kashino, Y., Koike, H., and Satoh, K. (1998) Photosynth. Res., 57, 51–59.CrossRefGoogle Scholar
  38. 38.
    Aminaka, R., Taira, Y., Kashino, Y., Koike, H., and Satoh, K. (2006) Plant Cell Physiol., 47, 1612–1621.PubMedCrossRefGoogle Scholar
  39. 39.
    Yamamoto, Ya., Aminaka, R., Yoshioka, M., Khatoon, M., Komayama, K., et al. (2008) Photosynth. Res., 98, 589–608.PubMedCrossRefGoogle Scholar
  40. 40.
    Ishikawa, Y., Nakatani, E., Henmi, T., Ferjani, A., Harada, Y., Tamura, N., and Yamamoto, Y. (1999) Biochim. Biophys. Acta, 1413, 147–158.PubMedCrossRefGoogle Scholar
  41. 41.
    De Las Rivas, J., and Barber, J. (1997) Biochemistry, 36, 8897–8903.PubMedCrossRefGoogle Scholar
  42. 42.
    Barbato, R., Friso, G., Ponticos, M., and Barber, J. (1995) J. Biol. Chem., 270, 24032–24037.PubMedCrossRefGoogle Scholar
  43. 43.
    Mizusawa, N., Tomo, T., Satoh, K., and Miyao, M. (2003) Biochemistry, 42, 10034–10044.PubMedCrossRefGoogle Scholar
  44. 44.
    Allakhverdiev, S. I., Hayashi, H., Nishiyama, Y., Ivanov, A. G., Aliev, J. A., Klimov, V. V., Murata, N., and Carpentier, R. (2003) J. Plant Physiol., 160, 41–49.PubMedCrossRefGoogle Scholar
  45. 45.
    Capp, M. W., Pegram, L. M., Saecker, R. M., Kratz, M., Riccardi, D., Wendroff, T., Cannon, J. G., and Record, M. T. (2009) Biochemistry, 48, 10372–10379.PubMedCrossRefGoogle Scholar
  46. 46.
    Xiong, J., Subramaniam, S., and Govindjee (1996) Protein Sci., 5, 2054–2063.PubMedCrossRefGoogle Scholar
  47. 47.
    Mulo, P., Laakso, S., Maenpaa, P., and Aro, E. M. (1998) Plant Physiol., 117, 483–490.PubMedCrossRefGoogle Scholar
  48. 48.
    Xiong, J., Minagawa, J., Crofts, A., and Govindjee (1998) Biochim. Biophys. Acta, 1365, 473–491.PubMedCrossRefGoogle Scholar
  49. 49.
    Koropatkin, N. M., Koppenaal, D. W., Pakrasi, H. B., and Smith, N. J. (2007) J. Biol. Chem., 282, 2606–2614.PubMedCrossRefGoogle Scholar
  50. 50.
    Rowlett, R. S., Hoffmann, K. M., Failing, H., Mysliwiec, M. M., and Samardzic, D. (2010) Biochemistry, 49, 3640–3647.PubMedCrossRefGoogle Scholar
  51. 51.
    Halliwell, B., and Chirico, S. (1993) Am. J. Clin. Nutr., 57, 715S–725S.PubMedGoogle Scholar
  52. 52.
    Bruskov, V. I., Chernikov, A. V., Gudkov, S. V., and Masalinov, Zh. K. (2003) Mol. Biofiz., 48, 1022–1029.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • O. V. Pobeguts
    • 1
    Email author
  • T. N. Smolova
    • 1
  • V. V. Klimov
    • 1
  1. 1.Institute of Basic Biological ProblemsRussian Academy of SciencesPushchino, Moscow RegionRussia

Personalised recommendations