Advertisement

Biochemistry (Moscow)

, Volume 77, Issue 2, pp 165–170 | Cite as

Fast kinetics of nucleotide binding to Clostridium perfringens family II pyrophosphatase containing CBS and DRTGG domains

  • J. Jämsen
  • A. A. BaykovEmail author
  • R. LahtiEmail author
Article

Abstract

We earlier described CBS-pyrophosphatase of Moorella thermoacetica (mtCBS-PPase) as a novel phosphohydrolase that acquired a pair of nucleotide-binding CBS domains during evolution, thus endowing the protein with the capacity to be allosterically regulated by adenine nucleotides (Jämsen, J., Tuominen, H., Salminen, A., Belogurov, G. A., Magretova, N. N., Baykov, A. A., and Lahti, R. (2007) Biochem. J., 408, 327–333). We herein describe a more evolved type of CBS-pyrophosphatase from Clostridium perfringens (cpCBS-PPase) that additionally contains a DRTGG domain between the two CBS domains in the regulatory part. cpCBS-PPase retained the ability of mtCBS-PPase to be inhibited by micromolar concentrations of AMP and ADP and activated by ATP and was additionally activated by diadenosine polyphosphates (AP n A) with n > 2. Stopped-flow measurements using a fluorescent nucleotide analog, 2′(3′)-O-(N-methylanthranoyl)-AMP, revealed that cpCBS-PPase interconverts through two different conformations with transit times on the millisecond scale upon nucleotide binding. The results suggest that the presence of the DRTGG domain affords greater flexibility to the regulatory part, allowing it to more rapidly undergo conformational changes in response to binding.

Key words

inorganic pyrophosphatase CBS domain DRTGG domain Clostridia perfringens adenine nucleotides diadenosine polyphosphate 

Abbreviations

APnA

P1,Pn-diadenosine 5′-polyphosphate with n bridging phosphate residues

CBS

cystathionine β-synthase

cpCBS-PPase

CBS domain-containing PPase from Clostridium perfringens

Mant-AMP

2′(3′)-O-(N-methylanthranoyl)-AMP

mtCBS-PPase

CBS domain-containing PPase from Moorella thermoacetica

PPase

inorganic pyrophosphatase

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Kulaev, I. S., Vagabov, V. M., and Kulakovskaya, T. V. (2004) The Biochemistry of Inorganic Polyphosphates, John Wiley & Sons, Ltd., West Sussex.CrossRefGoogle Scholar
  2. 2.
    Heinonen, J. (2001) Biological Role of Inorganic Pyrophosphate, Kluwer Academic Publishers, Boston.CrossRefGoogle Scholar
  3. 3.
    Cooperman, B. S., Baykov, A. A., and Lahti, R. (1992) Trends Biochem. Sci., 17, 262–266.PubMedCrossRefGoogle Scholar
  4. 4.
    Baykov, A. A., Cooperman, B. S., Goldman, A., and Lahti, R. (1999) Progr. Mol. Subcell. Biol., 23, 127–150.CrossRefGoogle Scholar
  5. 5.
    Young, T. W., Kuhn, N. J., Wadeson, A., Ward, S., Burges, D., and Cooke, G. D. (1998) Microbiology, 144, 2563–2571.PubMedCrossRefGoogle Scholar
  6. 6.
    Shintani, T., Uchiumi, T., Yonezawa, T., Salminen, A., Baykov, A. A., Lahti, R., and Hachimori, A. (1998) FEBS Lett., 439, 263–266.PubMedCrossRefGoogle Scholar
  7. 7.
    Merckel, M. C., Fabrichniy, I. P., Salminen, A., Kalkkinen, N., Baykov, A. A., Lahti, R., and Goldman, A. (2001) Structure, 9, 289–297.PubMedCrossRefGoogle Scholar
  8. 8.
    Ahn, S., Milner, A. J., Futterer, K., Konopka, M., Ilias, M., Young, T. W., and White, S. A. (2001) J. Mol. Biol., 313, 797–811.PubMedCrossRefGoogle Scholar
  9. 9.
    Parfenyev, A. N., Salminen, A., Halonen, P., Hachimori, A., Baykov, A. A., and Lahti, R. (2001) J. Biol. Chem., 276, 24511–24518.PubMedCrossRefGoogle Scholar
  10. 10.
    Bateman, A. (1997) Trends Biochem. Sci., 22, 12–13.PubMedCrossRefGoogle Scholar
  11. 11.
    Scott, J., Hawley, S., Green, K., Anis, M., Stewart, G., Scullion, G., David, G., Norman, G. D. G., and Hardie, D. G. (2004) J. Clin. Invest., 113, 274–284.PubMedGoogle Scholar
  12. 12.
    Ignoul, S., and Eggermont, J. (2005) Am. J. Physiol. Cell Physiol., 289, 1369–1378.CrossRefGoogle Scholar
  13. 13.
    Jämsen, J., Tuominen, H., Salminen, A., Belogurov, G. A., Magretova, N. N., Baykov, A. A., and Lahti, R. (2007) Biochem. J., 408, 327–333.PubMedCrossRefGoogle Scholar
  14. 14.
    Tuominen, H., Salminen, A., Oksanen, E., Jämsen, J., Heikkila, O., Lehtio, L., Magretova, N. N., Goldman, A., Baykov, A. A., and Lahti, R. (2010) J. Mol. Biol., 398, 410–413.CrossRefGoogle Scholar
  15. 15.
    Jämsen, J., Baykov, A. A., and Lahti, R. (2010) Biochemistry, 49, 1005–1013.PubMedCrossRefGoogle Scholar
  16. 16.
    Jones, L. J., Haugland, R. P., and Singer, V. L. (2003) BioTechniques, 34, 850–854.PubMedGoogle Scholar
  17. 17.
    Baykov, A. A., and Avaeva, S. M. (1981) Anal. Biochem., 116, 1–4.PubMedCrossRefGoogle Scholar
  18. 18.
    Hiratsuka, T. (1983) Biochim. Biophys. Acta, 742, 496–508.PubMedCrossRefGoogle Scholar
  19. 19.
    Fersht, A. (1999) Structure and Mechanism in Protein Science, W. H. Freeman and Co., New York, pp. 150–151.Google Scholar
  20. 20.
    Jämsen, J., Tuominen, H., Baykov, A. A., and Lahti, R. (2011) Biochem. J., 433, 497–504.PubMedCrossRefGoogle Scholar
  21. 21.
    Garrison, P. N., and Barnes, L. D. (1992) in Ap4A and Other Dinucleoside Polyphosphates (McLennan, A. G., ed.) CRC Press, Boca Raton, pp. 29–61.Google Scholar
  22. 22.
    Plateau, P., and Blanquet, S. (1994) Adv. Microb. Physiol., 36, 81–109.PubMedCrossRefGoogle Scholar
  23. 23.
    Nishimura, A. (1998) Trends Biochem. Sci., 23, 157–159.PubMedCrossRefGoogle Scholar
  24. 24.
    Ismail, T. M., Hart, C. A., and McLennan, A. G. (2003) J. Biol. Chem., 278, 32602–32607.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Department of Biochemistry and Food ChemistryUniversity of TurkuTurkuFinland
  2. 2.Belozersky Institute of Physico-Chemical BiologyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations