Biochemistry (Moscow)

, Volume 77, Issue 2, pp 143–151 | Cite as

Formation kinetics and H2O2 distribution in chloroplasts and protoplasts of photosynthetic leaf cells of higher plants under illumination

  • I. A. Naydov
  • M. M. Mubarakshina
  • B. N. IvanovEmail author


The dye H2DCF-DA, which forms the fluorescent molecule DCF in the reaction with hydrogen peroxide, H2O2, was used to study light-induced H2O2 production in isolated intact chloroplasts and in protoplasts of mesophyll cells of Arabidopsis, pea, and maize. A technique to follow the kinetics of light-induced H2O2 production in the photosynthesizing cells using this dye has been developed. Distribution of DCF fluorescence in these cells in the light has been investigated. It was found that for the first minutes of illumination the intensity of DCF fluorescence increases linearly after a small lag both in isolated chloroplasts and in chloroplasts inside protoplast. In protoplasts of Arabidopsis mutant vtc2-2 with disturbed biosynthesis of ascorbate, the rate of increase in DCF fluorescence intensity in chloroplasts was considerably higher than in protoplasts of the wild type plant. Illumination of protoplasts also led to an increase in DCF fluorescence intensity in mitochondria. Intensity of DCF fluorescence in chloroplasts increased much more rapidly than in cytoplasm. The cessation of cytoplasmic movement under illumination lowered the rate of DCF fluorescence intensity increase in chloroplasts and sharply accelerated it in the cytoplasm. It was revealed that in response to switching off the light, the intensity of fluorescence of both DCF and fluorescent dye FDA increases in the cytoplasm in the vicinity of chloroplasts, while it decreases in the chloroplasts; the opposite changes occur in response to switching on the light again. It was established that these phenomena are connected with proton transport from chloroplasts in the light. In the presence of nigericin, which prevents the establishment of transmembrane proton gradients, the level of DCF fluorescence in cytoplasm was higher and increased more rapidly than in the chloroplasts from the very beginning of illumination. These results imply the presence of H2O2 export from chloroplasts to cytoplasm in photosynthesizing cells in the light; the increase in this export falls in the same time interval as does the cessation of cytoplasmic movement.

Key words

plants protoplasts chloroplasts reactive oxygen species hydrogen peroxide confocal microscopy 



bovine serum albumin




3-(3,4-dichlorophenyl)-1,1-dimethylurea (diuron)


fluorescein diacetate


dihydrodichlorofluorescein diacetate


photosynthetic electron transport chain


photosystem I(II)


reactive oxygen species


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10541_2012_9547_MOESM1_ESM.pdf (178 kb)
Supplementary material, approximately 177 KB.


  1. 1.
    Ivanov, B., and Khorobrykh, S. (2003) Antioxid. Redox Signal., 5, 43–53.PubMedCrossRefGoogle Scholar
  2. 2.
    Kuvykin, I. V., Vershubskii, A. V., Ptushenko, V. V., and Tikhonov, A. N. (2008) Biochemistry (Moscow), 73, 1063–1075.CrossRefGoogle Scholar
  3. 3.
    Mubarakshina, M. M., and Ivanov, B. N. (2010) Physiol. Plant., 140, 103–110.PubMedCrossRefGoogle Scholar
  4. 4.
    Asada, K. (1999) Annu. Rev. Plant Physiol. Plant Mol. Biol., 50, 601–639.PubMedCrossRefGoogle Scholar
  5. 5.
    Foyer, C., and Noctor, G. (2009) Antioxid. Redox Signal., 11, 861–905.PubMedCrossRefGoogle Scholar
  6. 6.
    Mubarakshina, M. M., Ivanov, B. N., Naydov, I. A., Hillier, W., Badger, M. R., and Krieger-Liszkay, A. (2010) J. Exp. Bot., 61, 3577–3587.PubMedCrossRefGoogle Scholar
  7. 7.
    Swanson, S., Choi, W.-G., Chanoca, A., and Gilroy, S. (2011) Ann. Rev. Plant Biol., 62, 273–297.CrossRefGoogle Scholar
  8. 8.
    LeBel, C. P., Ischiropoulos, H., and Bondy, S. C. (1992) Chem. Res. Toxicol., 5, 227–231.PubMedCrossRefGoogle Scholar
  9. 9.
    Rodriguez, A. A., Grunberg, K. A., and Taleisnik, E. L. (2002) Plant Physiol., 129, 1627–1632.PubMedCrossRefGoogle Scholar
  10. 10.
    Samuilov, V. D., Kiselevsky, D. B., Sinitsyn, S. V., Shestak, A. A., Lagunova, E. M., and Nesov, A. V. (2006) Biochemistry (Moscow), 71, 384–394.CrossRefGoogle Scholar
  11. 11.
    Samuilov, V. D., Kiselevsky, D. B., Shestak, A. A., Nesov, A. V., and Vasil’ev, L. A. (2008) Biochemistry (Moscow), 73, 1076–1084.CrossRefGoogle Scholar
  12. 12.
    Kristiansen, K. A., Jensen, P. E., Møller, I. M., and Schulz, A. (2009) Physiol. Plant., 136, 369–383.PubMedCrossRefGoogle Scholar
  13. 13.
    Naidov, I. A., and Ivanon, B. N. (2008) Proc. Int. Conf. “Physical-Chemical Basis of Structural-Functional Organization of Plants”, Yekaterinburg, p. 291.Google Scholar
  14. 14.
    Gotow, K., Taylor, S., and Zeiger, E. (1988) Plant Physiol., 86, 700–705.PubMedCrossRefGoogle Scholar
  15. 15.
    Laasch, H. (1987) Planta, 171, 220–226.CrossRefGoogle Scholar
  16. 16.
    Mullet, J. E., and Chua, N. H. (1983) Methods Enzymol., 97, 502–509.CrossRefGoogle Scholar
  17. 17.
    Heber, U., and Santarius, K. A. (1970) Z. Naturforsch., 25, 718–728.Google Scholar
  18. 18.
    Naidov, I. A., Mudrik, V. A., and Ivanov, B. N. (2010) RAS Reports, 432, 834–837.Google Scholar
  19. 19.
    Ivanov, B. N. (2000) Free Radical Res., 33, 217–227.CrossRefGoogle Scholar
  20. 20.
    Conklin, P. L., Saracco, S. A., Norris, S. R., and Last, R. L. (2000) Genetics, 154, 847–856.PubMedGoogle Scholar
  21. 21.
    Ivanov, B. N. (1998) Biochemistry (Moscow), 63, 133–138.Google Scholar
  22. 22.
    Monshausen, G. B., Bibikova, T. N., Weisenseel, M. H., and Gilroy, S. (2009) The Plant Cell, 21, 2341–2356.PubMedCrossRefGoogle Scholar
  23. 23.
    Hauser, M., Eichelmann, H., Heber, U., and Laisk, A. (1995) Planta, 196, 199–204.CrossRefGoogle Scholar
  24. 24.
    Oja, V., Savchenko, G., Jakob, B., and Heber, U. (1999) Planta, 209, 239–249.PubMedCrossRefGoogle Scholar
  25. 25.
    Heber, U., and Heldt, H. W. (1981) Ann. Rev. Plant Physiol., 32, 139–168.CrossRefGoogle Scholar
  26. 26.
    Berkowitz, G. A., and Peters, J. S. (1993) Plant Physiol., 102, 261–267.PubMedGoogle Scholar
  27. 27.
    Svintitskikh, V. A., Andrianov, V. K., and Bulychev, A. A. (1985) J. Exp. Bot., 36, 1414–1429.CrossRefGoogle Scholar
  28. 28.
    Mubarakshina, M., Khorobrykh, S., and Ivanov, B. (2006) Biochim. Biophys. Acta, 1757, 1496–1503.PubMedCrossRefGoogle Scholar
  29. 29.
    Matsuyama, S., Llopis, J., Deveraux, Q. L., Tsien, R. Y., and Reed, J. C. (2000) Nature Cell Biol., 2, 318–325.PubMedCrossRefGoogle Scholar
  30. 30.
    Yoshinaga, K., Arimura, S.-I., Niwa, Y., Tsutsumi, N., Uchimiya, H., and Kawai-Yamada, M. (2005) Ann. Bot., 96, 337–342.PubMedCrossRefGoogle Scholar
  31. 31.
    Naidov, I. A., and Ivanov, B. N. (2009) Proc. All-Russ. Conf. “Organisms Resistance to Difficult Environment”, Irkutsk, pp. 310–311.Google Scholar
  32. 32.
    Lucas, W. J., and Dainty, J. (1977) J. Membr. Biol., 32, 75–92.PubMedCrossRefGoogle Scholar
  33. 33.
    Bulychev, A. A., and Vredenberg, W. J. (2003) Planta, 218, 143–151.PubMedCrossRefGoogle Scholar
  34. 34.
    Bulychev, A. A., and Dodonova, S. O. (2011) Fiziol. Rast., 58, 202–207.Google Scholar
  35. 35.
    Bulychev, A. A., and Krupenina, N. A. (2009) Plant. Signal. Behav., 4, 24–31.CrossRefGoogle Scholar
  36. 36.
    Queval, G., Hager, J., Gakière, B., and Noctor, G. (2008) J. Exp. Bot., 59, 135–146.PubMedCrossRefGoogle Scholar
  37. 37.
    Dalle-Donne, I., Rossi, R., Milzani, A., Di Simplicio, P., and Colombo, R. (2001) Free Rad. Biol. Med., 31, 1624–1632.PubMedCrossRefGoogle Scholar
  38. 38.
    Lin-Lin Yao, Qun Zhou, Bao-Lei Pli, and Ying-Zhang Li (2011) Plant Cell Environ., 34, 1586–1598.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • I. A. Naydov
    • 1
  • M. M. Mubarakshina
    • 1
  • B. N. Ivanov
    • 1
    Email author
  1. 1.Institute of Basic Biological ProblemsRussian Academy of SciencesPushchino, Moscow RegionRussia

Personalised recommendations