Biochemistry (Moscow)

, Volume 77, Issue 1, pp 71–77 | Cite as

Effect of K223E and K226E amino acid substitutions in PsbO protein of photosystem 2 on stability and functional activity of the water-oxidizing complex in Chlamydomonas reinhardtii

  • A. V. PigolevEmail author
  • D. S. Timoshevsky
  • V. V. Klimov


Site-directed mutations were introduced into PsbO protein of photosystem 2 to study the role of two lysine residues, 223 and 226 (LGAKPPK), in the green alga Chlamydomonas reinhardtii. Lysines 223 and 226 homologous to His228 and His231 from cyanobacteria are located on the protein side facing the lumen and can participate in formation of a channel connecting the Mn cluster with the intrathylakoid space. The K223E and K226E mutants were generated on the basis of the ΔpsbO strain of C. reinhardtii with the substitution of glutamic acid for the lysine residues. The K226E mutation leads to a decrease in stability of the protein and development of the ΔpsbO phenotype (the absence of both photosynthetic activity of photosystem 2 and photoautotrophic growth), with substantially decreased PsbO content in the cells. In the case of K223E, the mutant strain accumulated the normal level of PsbO protein and was able to grow photoautotrophically and to evolve oxygen. However, the rate of oxygen evolution and the F v/F m ratio were reduced by 15–20% compared to the control. Also, the time of the dark decay of F v in the presence of DCMU in the cells of the K223E mutant was increased, indicating impairment in the water-oxidizing complex. In general, our study shows the importance of amino acids K223 and K226 located at the lumenal surface of PsbO protein for the activity of the water-oxidizing complex.

Key words

PsbO protein site-directed mutagenesis photosystem 2 water-oxidizing complex Chlamydomonas reinhardtii 





electron transport chain


ratio of variable chlorophyll fluorescence (F v) to maximum fluorescence level (F m)


manganese-stabilizing protein (PsbO)


polymerase chain reaction


photosystem 2


reaction center


water-oxidizing complex


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bricker, T. M., and Burnap, R. L. (2005) in Photosystem II: The Light-Driven Water: Plastoquinone Oxidoreductase (Wydrzynski, T., and Satoh, K., eds.) Springer, The Netherlands, pp. 95–120.Google Scholar
  2. 2.
    Suorsa, M., and Aro, E. M. (2007) Photosynth. Res., 93, 89–100.PubMedCrossRefGoogle Scholar
  3. 3.
    Ono, T., and Inoue, Y. (1983) FEBS Lett., 164, 255–260.CrossRefGoogle Scholar
  4. 4.
    Miyao, M., and Murata, N. (1984) FEBS Lett., 170, 350–354.CrossRefGoogle Scholar
  5. 5.
    Bricker, T. M. (1992) Biochemistry, 31, 4623–4628.PubMedCrossRefGoogle Scholar
  6. 6.
    Yi, X., McChargue, M., Laborde, S., Frankel, L. K., and Bricker, T. M. (2005) J. Biol. Chem., 280, 16170–16174.PubMedCrossRefGoogle Scholar
  7. 7.
    Mayfield, S. P., Bennoun, P., and Rochaix, J. D. (1987) EMBO J., 6, 313–318.PubMedGoogle Scholar
  8. 8.
    Burnap, R. L., and Sherman, L. A. (1991) Biochemistry, 30, 440–446.PubMedCrossRefGoogle Scholar
  9. 9.
    Eaton-Rye, J. J., Shand, J. A., and Nicoll, W. S. (2003) FEBS Lett., 543, 148–153.PubMedCrossRefGoogle Scholar
  10. 10.
    Guskov, A., Kern, J., Gabdulkhakov, A., Broser, M., Zouni, A., and Saenger, W. (2009) Nat. Struct. Mol. Biol., 3, 334–342.CrossRefGoogle Scholar
  11. 11.
    De Las Rivas, J., and Barber, J. (2004) Photosynth. Res., 81, 329–343.PubMedCrossRefGoogle Scholar
  12. 12.
    Popelkova, H., Betts, S. D., Lydakis-Symantiris, N., Im, M. M., Swenson, E., and Yocum, C. F. (2006) Biochemistry, 9, 3107–3115.CrossRefGoogle Scholar
  13. 13.
    Motoki, A., Usui, M., Shimazu, T., Hirano, M., and Katoh, S. (2002) J. Biol. Chem., 17, 14747–14756.CrossRefGoogle Scholar
  14. 14.
    Ifuku, K., Ishihara, S., Shimamoto, R., Ido, K., and Sato, F. (2008) Photosynth. Res., 98, 427–437.PubMedCrossRefGoogle Scholar
  15. 15.
    Murray, J. W., and Barber, J. (2006) Biochemistry, 13, 4128–4141.CrossRefGoogle Scholar
  16. 16.
    Harris, E. H. (2001) Annu. Rev. Plant Physiol. Plant Mol. Biol., 52, 363–406.PubMedCrossRefGoogle Scholar
  17. 17.
    Pigolev, A. V., Zharmukhamedov, S. K., and Klimov, V. V. (2009) Biochemistry (Moscow). Suppl. Ser. A: Membrane and Cell Biology, 1, 33–41.CrossRefGoogle Scholar
  18. 18.
    Harris, E. H. (1989) The Chlamydomonas Sourcebook: A Comprehensive Guide to Biology and Laboratory Use, Academic Press, San Diego.Google Scholar
  19. 19.
    Mayfield, S. P., and Kindle, K. L. (1990) PNAS, 87, 2087–2091.PubMedCrossRefGoogle Scholar
  20. 20.
    Sizova, I., Fuhrmann, M., and Hegemann, P. (2001) Gene, 277, 221–229.PubMedCrossRefGoogle Scholar
  21. 21.
    Cao, M., Fu, Y., Guo, Y., and Pan, J. (2009) Protoplasma, 235, 107–110.PubMedCrossRefGoogle Scholar
  22. 22.
    Laemmli, U. K. (1970) Nature, 227, 680–685.PubMedCrossRefGoogle Scholar
  23. 23.
    Lichtenthaler, H. K. (1987) Meth. Enzymol., 148, 331–382.Google Scholar
  24. 24.
    Korneev, D. Yu. (2002) Informational Possibilities of the Method of Chlorophyll Fluorescence Induction [in Russian], Alterpress, Kiev.Google Scholar
  25. 25.
    Baker, N. R. (2008) Annu. Rev. Plant. Biol., 59, 89–113.PubMedCrossRefGoogle Scholar
  26. 26.
    Betts, S. D., Lydakis-Simantiris, N., Ross, J. R., and Yocum, C. F. (1998) Biochemistry, 40, 14230–14236.CrossRefGoogle Scholar
  27. 27.
    Burnap, R. L., Qian, M., Shen, J. R., Inoue, Y., and Sherman, L. A. (1994) Biochemistry, 46, 13712–13718.CrossRefGoogle Scholar
  28. 28.
    De Vitry, C., Olive, J., Drapier, D., Recouvreur, M., and Wollman, F. A. (1989) J. Cell Biol., 109, 991–1006.PubMedCrossRefGoogle Scholar
  29. 29.
    Egorova, E. A., and Bukhov, N. G. (2002) Fiziol. Rast., 49, 645–655.Google Scholar
  30. 30.
    Liu, H., Frankel, L. K., and Bricker, T. M. (2007) Biochemistry, 46, 7607–7613.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • A. V. Pigolev
    • 1
    Email author
  • D. S. Timoshevsky
    • 1
  • V. V. Klimov
    • 1
  1. 1.Institute of Basic Biological ProblemsRussian Academy of SciencesPushchino, Moscow RegionRussia

Personalised recommendations