Biochemistry (Moscow)

, Volume 77, Issue 1, pp 26–32 | Cite as

Pak6 protein kinase is a novel effector of an atypical Rho family GTPase Chp/RhoV

  • M. V. ShepelevEmail author
  • I. V. Korobko


Chp/RhoV is an atypical Rho GTPase whose functions are far from being fully understood. To date several effector proteins of Chp have been identified, including p21-activated kinases Pak1, Pak2, and Pak4. Using a yeast two-hybrid system and co-immunoprecipitation, here we show that another p21-activated kinase, Pak6, is a novel Chp-binding protein. Interaction between Chp and Pak6 depends on the activation state of the GTPase, suggesting that Pak6 is an effector protein for Chp. Point mutations in the effector domain of Chp or in the CRIB motif of Pak6 significantly impair the interaction between Chp and Pak6 upon co-immunoprecipitation, suggesting that the binding interface involves the effector domain of Chp and the CRIB motif in Pak6. We found that Chp does not affect the phosphorylation status of the S560 residue in the catalytic domain of Pak6 when Chp and Pak6 are co-expressed in HEK293 cells. Therefore, similarly to Cdc42, Chp is not likely to activate Pak6. In NCI-H1299 cells, Chp co-localizes with Pak6 on vesicular structures in activation state-dependent manner. Taking the data together, we report here the identification of p21-activated kinase Pak6 as a novel effector of the atypical Rho GTPase Chp. Our data suggest further directions in elucidating biological functions of these proteins.

Key words

Chp/RhoV GTPase Pak6 protein kinase protein-protein interactions 







enhanced green fluorescent protein


transcription activation domain of GAL4 transcription factor


DNA-binding domain of GAL4


synthetic dextrose medium


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

10541_2012_9532_MOESM1_ESM.pdf (132 kb)
Supplementary material, approximately 131 KB.


  1. 1.
    Aspenstrom, P., Ruusala, A., and Pacholsky, D. (2007) Exp. Cell Res., 313, 3673–3679.PubMedCrossRefGoogle Scholar
  2. 2.
    Etienne-Manneville, S., and Hall, A. (2002) Nature, 420, 629–635.PubMedCrossRefGoogle Scholar
  3. 3.
    Aspenstrom, P., Fransson, A., and Saras, J. (2004) Biochem. J., 377, 327–337.PubMedCrossRefGoogle Scholar
  4. 4.
    Shepelev, M. V., Chernoff, J., and Korobko, I. V. (2011) Small GTPases, 2, 17–26.PubMedCrossRefGoogle Scholar
  5. 5.
    Chenette, E. J., Abo, A., and Der, C. J. (2005) J. Biol. Chem., 280, 13784–13792.PubMedCrossRefGoogle Scholar
  6. 6.
    Chenette, E. J., Mitin, N. Y., and Der, C. J. (2006) Mol. Biol. Cell, 17, 3108–3121.PubMedCrossRefGoogle Scholar
  7. 7.
    Guemar, L., de Santa Barbara, P., Vignal, E., Maurel, B., Fort, P., and Faure, S. (2007) Dev. Biol., 310, 113–128.PubMedCrossRefGoogle Scholar
  8. 8.
    Tay, H. G., Ng, Y. W., and Manser, E. (2010) PLoS One, 5, e10125.PubMedCrossRefGoogle Scholar
  9. 9.
    Aronheim, A., Broder, Y. C., Cohen, A., Fritsch, A., Belisle, B., and Abo, A. (1998) Curr. Biol., 8, 1125–1128.PubMedCrossRefGoogle Scholar
  10. 10.
    Weisz Hubsman, M., Volinsky, N., Manser, E., Yablonski, D., and Aronheim, A. (2007) Biochem. J., 404, 487–497.PubMedCrossRefGoogle Scholar
  11. 11.
    Hofmann, C., Shepelev, M., and Chernoff, J. (2004) J. Cell Sci., 117, 4343–4354.PubMedCrossRefGoogle Scholar
  12. 12.
    Wells, C. M., and Jones, G. E. (2010) Biochem. J., 425, 465–473.PubMedCrossRefGoogle Scholar
  13. 13.
    Bokoch, G. M. (2003) Annu. Rev. Biochem., 72, 743–781.PubMedCrossRefGoogle Scholar
  14. 14.
    Dummler, B., Ohshiro, K., Kumar, R., and Field, J. (2009) Cancer Metastasis Rev., 28, 51–63.PubMedCrossRefGoogle Scholar
  15. 15.
    Yang, F., Li, X., Sharma, M., Zarnegar, M., Lim, B., and Sun, Z. (2001) J. Biol. Chem., 276, 15345–15353.PubMedCrossRefGoogle Scholar
  16. 16.
    Lee, S. R., Ramos, S. M., Ko, A., Masiello, D., Swanson, K. D., Lu, M. L., and Balk, S. P. (2002) Mol. Endocrinol., 16, 85–99.PubMedCrossRefGoogle Scholar
  17. 17.
    Dan, C., Nath, N., Liberto, M., and Minden, A. (2002) Mol. Cell Biol., 22, 567–577.PubMedCrossRefGoogle Scholar
  18. 18.
    Pandey, A., Dan, I., Kristiansen, T. Z., Watanabe, N. M., Voldby, J., Kajikawa, E., Khosravi-Far, R., Blagoev, B., and Mann, M. (2002) Oncogene, 21, 3939–3948.PubMedCrossRefGoogle Scholar
  19. 19.
    Abo, A., Qu, J., Cammarano, M. S., Dan, C., Fritsch, A., Baud, V., Belisle, B., and Minden, A. (1998) EMBO J., 17, 6527–6540.PubMedCrossRefGoogle Scholar
  20. 20.
    Chevray, P. M., and Nathans, D. (1992) Proc. Natl. Acad. Sci. USA, 89, 5789–5793.PubMedCrossRefGoogle Scholar
  21. 21.
    Schrantz, N., da Silva Correia, J., Fowler, B., Ge, Q., Sun, Z., and Bokoch, G. M. (2004) J. Biol. Chem., 279, 1922–1931.PubMedCrossRefGoogle Scholar
  22. 22.
    Tao, W., Pennica, D., Xu, L., Kalejta, R. F., and Levine, A. J. (2001) Genes Dev., 15, 1796–1807.PubMedCrossRefGoogle Scholar
  23. 23.
    Johnson, D. I. (1999) Microbiol. Mol. Biol. Rev., 63, 54–105.PubMedGoogle Scholar
  24. 24.
    Sells, M. A., Knaus, U. G., Bagrodia, S., Ambrose, D. M., Bokoch, G. M., and Chernoff, J. (1997) Curr. Biol., 7, 202–210.PubMedCrossRefGoogle Scholar
  25. 25.
    Lamarche, N., Tapon, N., Stowers, L., Burbelo, P. D., Aspenstrom, P., Bridges, T., Chant, J., and Hall, A. (1996) Cell, 87, 519–529.PubMedCrossRefGoogle Scholar
  26. 26.
    Davis, C. R., Richman, T. J., Deliduka, S. B., Blaisdell, J. O., Collins, C. C., and Johnson, D. I. (1998) J. Biol. Chem., 273, 849–858.PubMedCrossRefGoogle Scholar
  27. 27.
    Ottilie, S., Miller, P. J., Johnson, D. I., Creasy, C. L., Sells, M. A., Bagrodia, S., Forsburg, S. L., and Chernoff, J. (1995) EMBO J., 14, 5908–5919.PubMedGoogle Scholar
  28. 28.
    Brady, D. C., Alan, J. K., Madigan, J. P., Fanning, A. S., and Cox, A. D. (2009) Mol. Cell Biol., 29, 1035–1049.PubMedCrossRefGoogle Scholar
  29. 29.
    Ruusala, A., and Aspenstrom, P. (2008) Mol. Cell Biol., 28, 1802–1814.PubMedCrossRefGoogle Scholar
  30. 30.
    Ory, S., Brazier, H., and Blangy, A. (2007) Biol. Cell, 99, 701–716.PubMedCrossRefGoogle Scholar
  31. 31.
    Ching, Y. P., Leong, V. Y., Wong, C. M., and Kung, H. F. (2003) J. Biol. Chem., 278, 33621–33624.PubMedCrossRefGoogle Scholar
  32. 32.
    Kaur, R., Liu, X., Gjoerup, O., Zhang, A., Yuan, X., Balk, S. P., Schneider, M. C., and Lu, M. L. (2005) J. Biol. Chem., 280, 3323–3330.PubMedCrossRefGoogle Scholar
  33. 33.
    Kaur, R., Yuan, X., Lu, M. L., and Balk, S. P. (2008) Prostate, 68, 1510–1516.PubMedCrossRefGoogle Scholar
  34. 34.
    Zhang, M., Siedow, M., Saia, G., and Chakravarti, A. (2010) Prostate, 70, 807–816.PubMedGoogle Scholar
  35. 35.
    Wen, X., Li, X., Liao, B., Liu, Y., Wu, J., Yuan, X., Ouyang, B., Sun, Q., and Gao, X. (2009) Urology, 73, 1407–1411.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  1. 1.Institute of Gene BiologyRussian Academy of SciencesMoscowRussia

Personalised recommendations