Advertisement

Biochemistry (Moscow)

, Volume 76, Issue 12, pp 1360–1366 | Cite as

Investigation of the Redox interaction between Mn-bicarbonate complexes and reaction centers from Rhodobacter sphaeroides R-26, Chromatium minutissimum, and Chloroflexus aurantiacus

  • V. V. TerentyevEmail author
  • A. Ya. Shkuropatov
  • V. A. Shkuropatova
  • V. A. Shuvalov
  • V. V. Klimov
Article

Abstract

The change in the dark reduction rate of photooxidized reaction centers (RC) of type II from three anoxygenic bacteria (Rhodobacter sphaeroides R-26, Chromatium minutissimum, and Chloroflexus aurantiacus) having different redox potentials of the P+/P pair and availability of RC for exogenous electron donors was investigated upon the addition of Mn2+ and HCO 3 . It was found that the dark reduction of P 870 + from Rb. sphaeroides R-26 is considerably accelerated upon the combined addition of 0.5 mM MnCl2 and 30–75 mM NaHCO3 (as a result of formation of “low-potential” complexes [Mn(HCO3)2]), while MnCl2 and NaHCO3 added separately had no such effect. The effect is not observed either in RC from Cf. aurantiacus (probably due to the low oxidation potential of the primary electron donor, P865, which results in thermodynamic difficulties of the redox interaction between P 865 + and Mn2+) or in RC from Ch. minutissimum (apparently due to the presence of the RC-bound cytochrome preventing the direct interaction between P 870 + and Mn2+). The absence of acceleration of the dark reduction of P 870 + in the RC of Rb. sphaeroides R-26 when Mn2+ and HCO 3 were replaced by Mg2+ or Ca2+ and by formate, oxalate, or acetate, respectively, reveals the specificity of the Mn2+-bicarbonate complexes for the redox interaction with P+. The results of this work might be considered as experimental evidence for the hypothesis of the participation of Mn2+ complexes in the evolutionary origin of the inorganic core of the water oxidizing complex of photosystem II.

Key words

Mn-bicarbonate complexes reaction centers purple bacteria RC-bound cytochrome 

Abbreviations

LDAO

N,N-dimethyldodecylamino-N-oxide

P

primary electron donor

PSII

photosystem II

RC

reaction center

WOC

water-oxidizing complex

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ananyev, G. M., Zaltsman, L., Vasko, C., and Dismukes, G. C. (2001) Biochim. Biophys. Acta, 1503, 52–68.PubMedCrossRefGoogle Scholar
  2. 2.
    Joliot, P. (2003) Photosynth. Res., 76, 65–72.PubMedCrossRefGoogle Scholar
  3. 3.
    Blankenship, R. E. (1994) Antonie van Leeuwenhoek, 65, 311–329.PubMedCrossRefGoogle Scholar
  4. 4.
    Prince, R. C., Leigh, J. S., and Dutton, L. P. (1976) Biochim. Biophys. Acta, 440, 622–636.PubMedCrossRefGoogle Scholar
  5. 5.
    Klimov, V. V., Shuvalov, V. A., Krakhmaleva, I. N., Klevanik, A. V., and Krasnovsky, A. A. (1977) Biokhimiya, 42, 519–530.Google Scholar
  6. 6.
    Lin, X., Murchison, H. A., Nagarajan, V., Parson, W. W., Allen, J. P., and Williams, J. C. (1994) Proc. Natl. Acad. Sci. USA, 91, 10265–10269.PubMedCrossRefGoogle Scholar
  7. 7.
    Klimov, V. V., Allakhverdiev, S. I., Feyziev, Y., and Baranov, S. V. (1995) FEBS Lett., 363, 251–255.PubMedCrossRefGoogle Scholar
  8. 8.
    Klimov, V. V., Hulsebosch, R. J., Allakhverdiev, S. I., Wincencjusz, H., van Gorkom, H. J., and Hoff, A. J. (1997) Biochemistry, 36, 16277–16281.PubMedCrossRefGoogle Scholar
  9. 9.
    Allakhverdiev, S. I., Yruela, I., Picorel, R., and Klimov, V. V. (1997) Proc. Natl. Acad. Sci. USA, 94, 5050–5054.PubMedCrossRefGoogle Scholar
  10. 10.
    Baranov, S. V., Ananyev, G. M., Klimov, V. V., and Dismukes, G. C. (2000) Biochemistry, 39, 6060–6065.PubMedCrossRefGoogle Scholar
  11. 11.
    Baranov, S. V., Tyryshkin, A. M., Katz, D., Dismukes, G. C., Ananyev, G. M., and Klimov, V. V. (2004) Biochemistry, 43, 2070–2079.PubMedCrossRefGoogle Scholar
  12. 12.
    Shutova, T., Kenneweg, H., Buchta, J., Nikitina, J., Terentyev, V., Chernyshov, S., Andersson, B., Allakhverdiev, S., Klimov, V., Dau, H., Junge, W., and Samuelsson, G. (2008) EMBO J., 27, 782–791.PubMedCrossRefGoogle Scholar
  13. 13.
    Dismukes, G. C., Klimov, V. V., Baranov, S. V., Kozlov, Y. N., Dasgupta, J., and Tyryshkin, A. (2001) Proc. Natl. Acad. Sci. USA, 98, 2170–2175.PubMedCrossRefGoogle Scholar
  14. 14.
    Kozlov, Y. N., Kazakova, A. A., and Klimov, V. V. (1997) Biol. Membr. (Moscow), 14, 93–97.Google Scholar
  15. 15.
    Kozlov, Y. N., Zharmukhamedov, S. K., Tikhonov, K. G., Dasgupta, J., Kazakova, A. A., Dismukes, G. C., and Klimov, V. V. (2004) Phys. Chem. Chem. Phys., 6, 4905–4911.CrossRefGoogle Scholar
  16. 16.
    Dasgupta, J., Tyryshkin, A. M., Kozlov, Y. N., Klimov, V. V., and Dismukes, G. C. (2006) J. Phys. Chem. B., 110, 5099–5111.PubMedCrossRefGoogle Scholar
  17. 17.
    Proskuryakov, I. I., Prokhorenko, I. R., Voznyak, V. M., and Erokhin, Yu. E. (1978) Biofizika, 5, 916–918.Google Scholar
  18. 18.
    Kalman, L., LoBrutto, R., Allen, J. P., and Williams, J. C. (2003) Biochemistry, 42, 11016–11022.PubMedCrossRefGoogle Scholar
  19. 19.
    Khorobrykh, A. A., Terentyev, V. V., Zharmukhamedov, S. K., and Klimov, V. V. (2008) Philos. Trans. R. Soc. Lond. B. Biol. Sci., 363, 1245–1251.PubMedCrossRefGoogle Scholar
  20. 20.
    Shuvalov, V. A., Shkuropatova, V. A., Kulakova, S. M., Ismailov, M. A., and Shkuropatov, A. Ya. (1986) Biochim. Biophys. Acta, 849, 337–346.CrossRefGoogle Scholar
  21. 21.
    Zabelin, A. A., Shkuropatova, V. A., Shuvalov, V. A., and Shkuropatov, A. Ya. (2011) Biochim. Biophys. Acta, 1807, 1013–1021.PubMedCrossRefGoogle Scholar
  22. 22.
    Erokhin, Yu. V., Chugunov, V. A., Makhneva, Z. K., and Vasilyev, B. G. (1978) Biokhimiya, 43, 669–677.Google Scholar
  23. 23.
    Pierson, B. K., and Thornber, J. P. (1983) Proc. Natl. Acad. Sci. USA, 80, 80–84.PubMedCrossRefGoogle Scholar
  24. 24.
    Katona, G., Snijder, A., Gourdon, P., Andreasson, U., Hansson, O., Andreasson, L. E., and Neutze, R. (2005) Nat. Struct. Mol. Biol., 12, 630–631.PubMedCrossRefGoogle Scholar
  25. 25.
    Mourik, F., Reus, M., and Holzwarth, A. R. (2001) Biochim. Biophys. Acta, 1504, 311–318.PubMedCrossRefGoogle Scholar
  26. 26.
    Andreasson, U., and Andreasson, L. E. (2003) Photosynth. Res., 75, 223–233.PubMedCrossRefGoogle Scholar
  27. 27.
    Volk, M., Scheidel, G., Ogrodnik, A., Feick, R., and Mihel-Beyerle, M. E. (1991) Biochim. Biophys. Acta, 1058, 217–224.CrossRefGoogle Scholar
  28. 28.
    Chamorovsky, S. K., Zakharova, N. I., Remennikov, S. M., Sabo, Y., and Rubin, A. B. (1998) FEBS Lett., 422, 231–234.PubMedCrossRefGoogle Scholar
  29. 29.
    Bruce, B. D., Fuller, R. C., and Blankenship, R. E. (1982) Proc. Natl. Acad. Sci. USA, 79, 6532–6536.PubMedCrossRefGoogle Scholar
  30. 30.
    Venturoli, G., and Zannoni, D. (1988) Eur. J. Biochem., 178, 503–509.PubMedCrossRefGoogle Scholar
  31. 31.
    Allen, J. P., and Williams, J. C. (1998) FEBS Lett., 438, 5–9.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • V. V. Terentyev
    • 1
    Email author
  • A. Ya. Shkuropatov
    • 1
  • V. A. Shkuropatova
    • 1
  • V. A. Shuvalov
    • 1
  • V. V. Klimov
    • 1
  1. 1.Institute of Basic Biological ProblemsRussian Academy of SciencesPushchino, Moscow RegionRussia

Personalised recommendations