Biochemistry (Moscow)

, Volume 76, Issue 12, pp 1291–1299 | Cite as

Lipids in mammalian hibernation and artificial hypobiosis

  • I. K. KolomiytsevaEmail author


Membrane lipids—phospholipids, fatty acids, and cholesterol—participate in thermal adaptation of ectotherms (bacteria, amphibians, reptiles, fishes) mainly via changes in membrane viscosity caused by the degree of fatty acids unsaturation, cholesterol/phospholipids ratio, and phospholipid composition. Studies of thermal adaptation of endotherms (mammals and birds) revealed the regulatory role of lipids in hibernation. Cholesterol and fatty acids participate in regulation of the parameters of torpor, gene expression, and activity of enzymes of lipid metabolism. Some changes in lipid metabolism during artificial and natural hypobiosis, namely, increased concentration of cholesterol and fatty acids in blood and decreased cholesterol concentration in neocortex, are analogous to those observed under stress conditions and coincide with mammalian nonspecific reactions to environmental agents. It is shown that the effects of artificial and natural hypobiosis on lipid composition of mammalian cell membranes are different. Changes in lipid composition cause changes in membrane morphology during mammalian hibernation. The effect of hypobiosis on lipid composition of membranes and cell organelles is specific and seems to be defined by the role of lipids in signaling systems. Comparative study of lipid metabolism in membranes and organelles during natural and artificial hypobiosis is promising for elucidation of adaptation of mammals to low ambient temperatures.

Key words

mammals hibernation artificial hypobiosis membranes lipids 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Slonim, A. D. (1986) Evolution of Thermoregulation [in Russian], Nauka, Leningrad.Google Scholar
  2. 2.
    Schnoll, S. E. (1979) Physicochemical Factors of Biological Evolution [in Russian], Nauka, Moscow.Google Scholar
  3. 3.
    Antonov, V. F., Smirnova, E. Yu., and Shevchenko, E. V. (1992) Lipid Membranes in Phase Transitions [in Russian], Nauka, Moscow.Google Scholar
  4. 4.
    Charakoz, D. P. (2001) Uspekhi Biol. Khim., 41, 333–364.Google Scholar
  5. 5.
    Smirnov, L. P., and Bogdan, V. V. (2007) Lipids in Physiological-Biochemical Adaptations of Ectotherms to Abiotic and Biotic Environmental Factors [in Russian], Nauka, Moscow.Google Scholar
  6. 6.
    Medvedev, L. N., and Elsukova, E. I. (2002) Brown Fatty Tissue. Molecular-Cellular Basics for Regulated Thermogenesis [in Russian], Amalgama, Krasnoyarsk.Google Scholar
  7. 7.
    Anufriev, A. I., and Vasil’ev, I. S. (1990) Animal Adaptation to Cold [in Russian], Nauka, Novosibirsk, pp. 15–21.Google Scholar
  8. 8.
    Ignat’ev, D. A., Sukhova, G. S., and Sukhov, V. P. (2001) Zh. Obshch. Biol., 62, 66–77.PubMedGoogle Scholar
  9. 9.
    McArthur, M. D., and Milsom, W. K. (1991) Physiol. Zool., 64, 940–959.Google Scholar
  10. 10.
    Belousov, A. V. (1993) Uspekhi Fiziol. Nauk, 24, 109–127.Google Scholar
  11. 11.
    Dark, J. (2005) Annu. Rev. Nutr., 25, 469–497.PubMedCrossRefGoogle Scholar
  12. 12.
    Geiser, F. (2004) Annu. Rev. Physiol., 66, 239–274.PubMedCrossRefGoogle Scholar
  13. 13.
    Drew, K. L., Buck, C. L., Barnes, B. M., Christian, S. L., Rasley, B. T., and Harris, M. B. (2007) J. Neurochem., 102, 1713–1726.PubMedCrossRefGoogle Scholar
  14. 14.
    Maistrakh, E. V. (1964) Hypothermy and Anabiosis [in Russian], Nauka, Moscow-Leningrad.Google Scholar
  15. 15.
    Giaja, J. (1953) Biol. Med., 42, 545–552.Google Scholar
  16. 16.
    Timofeev, N. N. (2005) Hypobiosis and Cryobiosis. Past, Present and Future [in Russian], Inform-Znanie, Moscow.Google Scholar
  17. 17.
    Lyman, C. P., Willis, J. S., Malan, A., and Wang, L. C. H. (1987) Hibernation and Torpor in Mammals and Birds, Academic Press, N-Y.Google Scholar
  18. 18.
    Kaznacheev, Yu. S., Kolomiytseva, I. K., Kulagina, T. P., and Markevich, L. N. (1984) Biokhimiya, 49, 2008–2011.Google Scholar
  19. 19.
    Storey, K. B., and Storey, J. M. (2004) Biol. Rev., 79, 207–233.PubMedCrossRefGoogle Scholar
  20. 20.
    Chen, J., Yuan, L., Sun, M., Zhang, L., and Zhang, S. (2008) Comp. Biochem. Physiol. B., 149, 388–393.PubMedCrossRefGoogle Scholar
  21. 21.
    Woods, A. K., and Storey, K. B. (2007) Cell. Mol. Biol. Lett., 12, 621–632.PubMedCrossRefGoogle Scholar
  22. 22.
    Kramarova, L. I., Ziganshin, Z. Kh., and Gakhova, E. N. (2009) Bioorg. Khim., 35, 597–609.PubMedGoogle Scholar
  23. 23.
    Suozzi, A., Malatesta, M., and Zancanaro, C. (2009) J. Anat., 214, 956–962.PubMedCrossRefGoogle Scholar
  24. 24.
    Woods, A. K., and Storey, K. B. (2007) Cell. Mol. Biol. Lett., 12, 621–632.PubMedCrossRefGoogle Scholar
  25. 25.
    Eddy, S. F., Morin, P., and Storey, K. B. (2004) Biochim. Biophys. Acta, 1676, 63–70.PubMedGoogle Scholar
  26. 26.
    Aloia, R. C., and Raison, I. K. (1989) Biochim. Biophys. Acta, 988, 123–146.PubMedGoogle Scholar
  27. 27.
    Chauhan, V., Sheikh, A., Chauhan, A., Tsiouris, J., Malik, M., and Vaughan, M. (2002) Biochimie, 84, 1031–1034.PubMedCrossRefGoogle Scholar
  28. 28.
    Kolomiytseva, I. K., Perepelkina, N. I., Patrushev, I. V., and Popov, V. I. (2003) Biochemistry (Moscow), 68, 783–794.CrossRefGoogle Scholar
  29. 29.
    Snapp, T. L., and Heller, H. C. (1981) Physiol. Zool., 54, 297–307.Google Scholar
  30. 30.
    Carey, H. V., Andrews, M. T., and Martin, S. L. (2003) Physiol. Rev., 83, 1153–1181.PubMedGoogle Scholar
  31. 31.
    Brustovetsky, N. N., Amerkhanov, Ts. G., Grishina, E. V., and Maevsky, E. I. (1990) Biokhimiya, 55, 201–209.Google Scholar
  32. 32.
    Brustovetsky, N. N., Egorova, M. V., Gnutov, D. Yu., Gogvadze, V. G., Mokhova, E. N., and Skulachev, V. P. (1992) FEBS Lett., 305, 15–17.PubMedCrossRefGoogle Scholar
  33. 33.
    Florant, G. L., Heister, L., Ameenuddin, S., and Rintoul, D. A. (1993) Am. J. Physiol., 264 (Regul. Integr. Comp. Physiol., 33), R747–R753.PubMedGoogle Scholar
  34. 34.
    Geiser, F., and Kenagy, G. J. (1987) Am. J. Physiol., 252 (Regul. Integr. Comp. Physiol., 21), R897–R901.PubMedGoogle Scholar
  35. 35.
    Geiser, L., McAllan, B. M., and Kenagy, G. J. (1994) J. Comp. Physiol. B, 164, 299–305.PubMedCrossRefGoogle Scholar
  36. 36.
    Geiser, F., Kenagy, G. J., and Wingfield, J. C. (1997) J. Comp. Physiol. B, 167, 416–422.PubMedCrossRefGoogle Scholar
  37. 37.
    Aloia, R. C. (1988) in Advances in Membrane Fluidity (Aloia, R. C., Curtain, C. C., and Gordon, L. M., eds.) Liss, N-Y, pp. 1–39.Google Scholar
  38. 38.
    Ignat’ev, D. A., Fialkovskaya, L. A., Perepelkina, N. I., Markevich, L. N., Kraev, I. V., and Kolomiytseva, I. K. (2006) Radiats. Biol. Radioekol., 46, 705–712.Google Scholar
  39. 39.
    Serkova, N. J., Rose, J. C., Epperson, L. E., Carey, H. V., and Martin, S. L. (2007) Physiol. Genom., 31, 15–24.CrossRefGoogle Scholar
  40. 40.
    Nelson, C. J., Otis, J. P., Martin, S. L., and Carey, H. V. (2009) Physiol. Genom., 37, 43–51.CrossRefGoogle Scholar
  41. 41.
    Paila, Y. D., Tiwari, S., and Chattopadhyay, A. (2009) Biochim. Biophys. Acta, 1788, 295–302.PubMedCrossRefGoogle Scholar
  42. 42.
    Tamiya-Koizumi, K. (2002) J. Biochem., 132, 13–22.PubMedGoogle Scholar
  43. 43.
    Alessenko, A. V., and Burlakova, E. B. (2002) Bioelectrochemistry, 58, 13–21.PubMedCrossRefGoogle Scholar
  44. 44.
    Nelson, C. J., Otis, J. P., and Carey, H. V. (2009) J. Physiol., 587, 1863–1870.PubMedCrossRefGoogle Scholar
  45. 45.
    Ntambi, J. M. (1999) J. Lip. Res., 40, 1549–1558.Google Scholar
  46. 46.
    Goldman, S. (1975) Am. J. Physiol., 228, 834–838.PubMedGoogle Scholar
  47. 47.
    Kolomiytseva, I. K., Perepelkina, N. I., Zharikova, A. D., and Popov, V. I. (2008) Comp. Biochem. Physiol. B, 151, 386–391.PubMedCrossRefGoogle Scholar
  48. 48.
    Berridge, M. E. (1984) Biochem. J., 220, 345–368.PubMedGoogle Scholar
  49. 49.
    Kolomiytseva, I. K. (1989) Radiation Biochemistry of Membrane Lipids [in Russian], Nauka, Moscow.Google Scholar
  50. 50.
    Blokhina, V. D., and Korzhova, L. D. (1976) Radiation and Protein Synthesis [in Russian], Atomizdat, Moscow.Google Scholar
  51. 51.
    Gordon, R. Ya., Ignat’ev, D. A., Rogachevsky, V. V., Medvedev, N. I., Kraev, I. V., Patrushev, I. V., Khutsyan, S. S., and Popov, V. I. (2006) Zh. Evol. Khim. Fiziol., 42, 237–243.Google Scholar
  52. 52.
    Zager, R. A., Burkhart, K. M., Johnson, A. C., and Sacks, B. M. (1999) Kidney Int., 56, 1788–1797.PubMedCrossRefGoogle Scholar
  53. 53.
    McMullen, T. P. W., Lewis, A H., and McEnhaley, R. N. (2009) Biochim. Biophys. Acta, 1788, 345–357.PubMedCrossRefGoogle Scholar
  54. 54.
    Faitova, J., Krekac, D., Hrstka, R., and Voitesek, B. (2006) Moll. Cell. Biol. Lett., 11, 488–505.CrossRefGoogle Scholar
  55. 55.
    Chapman, R., Sidrauski, C., and Walter, P. (1998) Annu. Rev. Cell. Biol., 14, 459–485.CrossRefGoogle Scholar
  56. 56.
    Mamady, H., and Storey, K. B. (2006) Mol. Cell. Biochem., 292, 89–98.PubMedCrossRefGoogle Scholar
  57. 57.
    Hazel, J. R. (1995) Annu. Rev. Physiol., 57, 19–24.PubMedCrossRefGoogle Scholar
  58. 58.
    Gurin, V. N. (1986) Lipid Metabolism in Hypothermy, Hyperthermy and Inflammation [in Russian], Belarus’, Minsk.Google Scholar
  59. 59.
    Sedlakova, A., Ahlers, I., and Praslicka, M. (1980) Folia Biol. (Praha), 26, 204–210.Google Scholar
  60. 60.
    Kolomiytseva, I. K., Markevich, L. N., Ignat’ev, D. A., and Bykova, O. V. (2010) Biochemistry (Moscow), 75, 1132–1138.CrossRefGoogle Scholar
  61. 61.
    Gosselet, F., Candella, P., Sevin, E., Berezowski, V., Cecchelli, R., and Fenart, L. (2009) Brain Res., 1249, 34–42.PubMedCrossRefGoogle Scholar
  62. 62.
    Kolomiytseva, I. K., Markevich, L. N., Perepelkina, N. I., Bykova, O. V., Ignat’ev, D. A., and Fesenko, E. E. (2009) Dokl. Akad. Nauk, 427, 844–848.Google Scholar
  63. 63.
    Michell, R. H., Kirk, C. J., Jones, L. M., Downes, C. P., and Creba, J. A. (1981) Phil. Trans. Roy. Soc. London, B296, 123–138.Google Scholar
  64. 64.
    Popov, V. I., Bocharova, L. S., and Bragin, A. G. (1992) Neuroscience, 48, 45–51.PubMedCrossRefGoogle Scholar
  65. 65.
    Popov, V. I., and Bocharova, L. S. (1992) Neuroscience, 48, 53–62.PubMedCrossRefGoogle Scholar
  66. 66.
    Ohe, C. G., Darian-Smith, C., Garner, C. C., and Heller, H. C. (2006) J. Neurosci., 26, 10590–10598.PubMedCrossRefGoogle Scholar
  67. 67.
    Ohe, C. G., Garner, C. C., Darian-Smith, C., and Heller, H. C. (2007) J. Neurosci., 27, 84–92.PubMedCrossRefGoogle Scholar
  68. 68.
    Brustovetsky, N. N., Egorova, M. V., Iljasova, E. N., and Bakeeva, L. E. (1993) Comp. Biochem. Physiol., 106B, 125–130.Google Scholar
  69. 69.
    Augee, M. L., Pehowich, D. J., Raison, J. K., and Wang, L. C. H. (1984) Biochim. Biophys. Acta, 776, 27–36.CrossRefGoogle Scholar
  70. 70.
    Pehowich, D. J., Macdonald, P. M., McElhaney, R. N., Cossins, A. R., and Wang, L. C. H. (1988) Biochemistry, 27, 4632–4638.PubMedCrossRefGoogle Scholar
  71. 71.
    Trincher, K. S. (1981) Die Gesetze der Biologischen Thermodynamik, Urban Schwarzenberg, Wien.Google Scholar
  72. 72.
    Yashkichev, V. I. (1996) Water, Molecular Movement, Structure, Interphase Processes, and Response on External Action [in Russian], Agar, Moscow.Google Scholar
  73. 73.
    Osborne, P. G., and Hashimoto, M. (2008) J. Neurochem., 106, 1888–1899.PubMedGoogle Scholar
  74. 74.
    Fuertes, G., Gimenez, D., Esteban-Martin, S., Garcia-Saez, A., Sanchez, O., and Salgado, J. (2010) Adv. Exp. Med. Biol., 677, 31–55.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Institute of Cell BiophysicsRussian Academy of SciencesPushchino, Moscow RegionRussia

Personalised recommendations