Advertisement

Biochemistry (Moscow)

, Volume 76, Issue 11, pp 1253–1261 | Cite as

Characteristics of protection by MgADP and MgATP of α3β3Γ subcomplex of thermophilic Bacillus PS3 βY341W-mutant F1-ATPase from inhibition by 7-chloro-4-nitrobenz-2-oxa-1,3-diazole support a Bi-site mechanism of catalysis

  • Y. M. MilgromEmail author
Article

Abstract

MgADP and MgATP binding to catalytic sites of βY341W-α3β3Γ subcomplex of F1-ATPase from thermophilic Bacillus PS3 has been assessed using their effect on the enzyme inhibition by 7-chloro-4-nitrobenz-2-oxa-1,3-diazole (NBD-Cl). It was assumed that NBD-Cl can inhibit only when catalytic sites are empty, and inhibition is prevented if a catalytic site is occupied with a nucleotide. In the absence of an activator, MgADP and MgATP protect βY341W-α3β3Γ sub-complex from inhibition by NBD-Cl by binding to two catalytic sites with an affinity of 37 μM and 12 mM, and 46 μM and 15 mM, respectively. In the presence of an activator lauryldimethylamine-N-oxide (LDAO), MgADP protects βY341W-α3β3Γ subcomplex from inhibition by NBD-Cl by binding to a catalytic site with a K d of 12 mM. Nucleotide binding to a catalytic site with affinity in the millimolar range has not been previously revealed in the fluorescence quenching experiments with βY341W-α3β3Γ subcomplex. In the presence of activators LDAO or selenite, MgATP protects βY341W-α3β3Γ subcomplex from inhibition by NBD-Cl only partially, and the enzyme remains sensitive to inhibition by NBD-Cl even at MgATP concentrations that are saturating for ATPase activity. The results support a bi-site mechanism of catalysis by F1-ATPases.

Key words

ATP synthase catalytic cooperativity bi-site catalysis multi-site catalysis nucleotide binding 

Abbreviations

BSA

bovine serum albumin

F1

the solubilized portion of FoF1-ATP synthase

LDAO

lauryldimethylamine-N-oxide

MF1, EcF1, and TF1, F1

ATPases from mitochondria Escherichia coli, and thermophilic Bacillus PS3, respectively

NBD-Cl

7-chloro-4-nitrobenz-2-oxa-1,3-diazole

PEP

phosphoenolpyruvate

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cross, R. L., and Nalin, C. M. (1982) J. Biol. Chem., 257, 2874–2881.PubMedGoogle Scholar
  2. 2.
    Kato-Yamada, Y., and Yoshida, M. (2003) J. Biol. Chem., 278, 36013–36016.PubMedCrossRefGoogle Scholar
  3. 3.
    Iizuka, S., Kato, S., Yoshida, M., and Kato-Yamada, Y. (2006) Biochem. Biophys. Res. Commun., 349, 1368–1371.PubMedCrossRefGoogle Scholar
  4. 4.
    Abrahams, J. P., Leslie, A. G., Lutter, R., and Walker, J. E. (1994) Nature, 370, 621–628.PubMedCrossRefGoogle Scholar
  5. 5.
    Boyer, P. D., Cross, R. L., and Momsen, W. (1973) Proc. Natl. Acad. Sci. USA, 70, 2837–2839.PubMedCrossRefGoogle Scholar
  6. 6.
    Kayalar, C., Rosing, J., and Boyer, P. D. (1977) J. Biol. Chem., 252, 2486–2491.PubMedGoogle Scholar
  7. 7.
    Boyer, P. D., and Kohlbrenner, W. E. (1981) in Energy Coupling in Photosynthesis (Selman, B. R., and Selman-Reiner S., eds.) Elsevier North Holland, New York, pp. 231–240.Google Scholar
  8. 8.
    Kinosita, K., Jr., Yasuda, R., Noji, H., and Adachi, K. (2000) Philos. Trans. R. Soc. Lond. B, Biol. Sci., 355, 473–489.CrossRefGoogle Scholar
  9. 9.
    Stock, D., Gibbons, C., Arechaga, I., Leslie, A. G. W., and Walker, J. E. (2000) Curr. Opin. Struct. Biol., 10, 672–679.PubMedCrossRefGoogle Scholar
  10. 10.
    Noji, H., Yasuda, R., Yoshida, M., and Kinosita, K., Jr. (1997) Nature, 386, 299–302.PubMedCrossRefGoogle Scholar
  11. 11.
    Kato-Yamada, Y., Noji, H., Yasuda, R., Kinosita, K., Jr., and Yoshida, M. (1998) J. Biol. Chem., 273, 19375–19377.PubMedCrossRefGoogle Scholar
  12. 12.
    Sambongi, Y., Iko, Y., Tanabe, M., Omote, H., Iwamoto-Kihara, A., Ueda, I., Yanagida, T., Wada, Y., and Futai, M. (1999) Science, 286, 1722–1724.PubMedCrossRefGoogle Scholar
  13. 13.
    Nishio, K., Iwamoto-Kihara, A., Yamamoto, A., Wada, Y., and Futai, M. (2002) Proc. Natl. Acad. Sci. USA, 99, 13448–13452.PubMedCrossRefGoogle Scholar
  14. 14.
    Itoh, H., Takahashi, A., Adachi, K., Noji, H., Yasuda, R., Yoshida, M., and Kinosita, K., Jr. (2004) Nature, 427, 465–468.PubMedCrossRefGoogle Scholar
  15. 15.
    Cross, R. L., Grubmeyer, C., and Penefsky, H. S. (1982) J. Biol. Chem., 257, 12101–12105.PubMedGoogle Scholar
  16. 16.
    Grubmeyer, C., Cross, R. L., and Penefsky, H. S. (1982) J. Biol. Chem., 257, 12092–12100.PubMedGoogle Scholar
  17. 17.
    Cunningham, D., and Cross, R. L. (1988) J. Biol. Chem., 263, 18850–18856.PubMedGoogle Scholar
  18. 18.
    Zhou, J.-M., and Boyer, P. D. (1993) J. Biol. Chem., 268, 1531–1538.PubMedGoogle Scholar
  19. 19.
    Milgrom, Y. M., Murataliev, M. B., and Boyer, P. D. (1998) Biochem. J., 330, 1037–1043.PubMedGoogle Scholar
  20. 20.
    Murataliev, M. B., and Boyer, P. D. (1994) J. Biol. Chem., 269, 15431–15439.PubMedGoogle Scholar
  21. 21.
    Milgrom, Y. M., and Cross, R. L. (2005) Proc. Natl. Acad. Sci. USA, 102, 13831–13836.PubMedCrossRefGoogle Scholar
  22. 22.
    Bulygin, V. V., and Milgrom, Y. M. (2009) Biochim. Biophys. Acta, 1787, 1016–1023.PubMedCrossRefGoogle Scholar
  23. 23.
    Weber, J., Wilke-Mounts, S., Lee, R. S.-F., Grell, E., and Senior, A. E. (1993) J. Biol. Chem., 268, 20126–20133.PubMedGoogle Scholar
  24. 24.
    Dou, C., Fortes, P. A. G., and Allison, W. S. (1998) Biochemistry, 37, 16757–16764.PubMedCrossRefGoogle Scholar
  25. 25.
    Ono, S., Hara, K. Y., Hirao, J., Matsui, T., Noji, H., Yoshida, M., and Muneyuki, E. (2003) Biochim. Biophys. Acta, 1607, 35–44.PubMedCrossRefGoogle Scholar
  26. 26.
    Corvest, V., Sigalat, C., Venard, R., Falson, P., Mueller, D. M., and Haraux, F. (2005) J. Biol. Chem., 280, 9927–9936.PubMedCrossRefGoogle Scholar
  27. 27.
    Bulygin, V. V., and Milgrom, Y. M. (2007) Proc. Natl. Acad. Sci. USA, 104, 4327–4331.PubMedCrossRefGoogle Scholar
  28. 28.
    Lobau, S., Weber, J., Wilke-Mounts, S., and Senior, A. E. (1997) J. Biol. Chem., 272, 3648–3656.PubMedCrossRefGoogle Scholar
  29. 29.
    Weber, J., and Senior, A. E. (1998) J. Biol. Chem., 273, 33210–33215.PubMedCrossRefGoogle Scholar
  30. 30.
    Nadanaciva, S., Weber, J., and Senior, A. E. (1999) J. Biol. Chem., 274, 7052–7058.PubMedCrossRefGoogle Scholar
  31. 31.
    Weber, J., and Senior, A. E. (1995) J. Biol. Chem., 270, 12653–12658.PubMedCrossRefGoogle Scholar
  32. 32.
    Ren, H., and Allison, W. S. (2000) J. Biol. Chem., 275, 10057–10063.PubMedCrossRefGoogle Scholar
  33. 33.
    Bandyopadhyay, S., Valder, C. R., Huynh, H. G., Ren, H., and Allison, W. S. (2002) Biochemistry, 41, 14421–14429.PubMedCrossRefGoogle Scholar
  34. 34.
    Ahmad, Z., and Senior, A. E. (2004) J. Biol. Chem., 279, 31505–31513.PubMedCrossRefGoogle Scholar
  35. 35.
    Ahmad, Z., and Senior, A. E. (2004) J. Biol. Chem., 279, 46057–46064.PubMedCrossRefGoogle Scholar
  36. 36.
    Ahmad, Z., and Senior, A. E. (2005) FEBS Lett., 579, 523–528.PubMedCrossRefGoogle Scholar
  37. 37.
    Nadanaciva, S., Weber, J., and Senior, A. E. (1999) Biochemistry, 38, 7670–7677.PubMedCrossRefGoogle Scholar
  38. 38.
    Nadanaciva, S., Weber, J., Wilke-Mounts, S., and Senior, A. E. (1999) Biochemistry, 38, 15493–15499.PubMedCrossRefGoogle Scholar
  39. 39.
    Ferguson, S. J., Lloyd, W. J., Lyons, M. H., and Radda, G. K. (1975) Eur. J. Biochem., 54, 117–126.PubMedCrossRefGoogle Scholar
  40. 40.
    Andrews, W. W., Hill, F. C., and Allison, W. S. (1984) J. Biol. Chem., 259, 8219–8225.PubMedGoogle Scholar
  41. 41.
    Sutton, R., and Ferguson, S. J. (1985) Eur. J. Biochem., 148, 551–554.PubMedCrossRefGoogle Scholar
  42. 42.
    Verburg, J. G., Yoshida, M., and Allison, W. S. (1986) Arch. Biochem. Biophys., 245, 8–13.PubMedCrossRefGoogle Scholar
  43. 43.
    Yoshida, M., and Allison, W. S. (1990) J. Biol. Chem., 265, 2483–2487.PubMedGoogle Scholar
  44. 44.
    Bulygin, V. V., and Milgrom, Y. M. (2010) Biochemistry (Moscow), 75, 327–335.CrossRefGoogle Scholar
  45. 45.
    Weber, J., Dunn, S. D., and Senior, A. E. (1999) J. Biol. Chem., 274, 19124–19128.PubMedCrossRefGoogle Scholar
  46. 46.
    Mao, H. Z., Gray, W. D., and Weber, J. (2006) FEBS Lett., 580, 4131–4135.PubMedCrossRefGoogle Scholar
  47. 47.
    Mnatsakanyan, N., Krishnakumar, A. M., Suzuki, T., and Weber, J. (2009) J. Biol. Chem., 284, 11336–11345.PubMedCrossRefGoogle Scholar
  48. 48.
    Yasuno, T., Muneyuki, E., Yoshida, M., and Kato-Yamada, Y. (2009) Biochem. Biophys. Res. Commun., 390, 230–234.PubMedCrossRefGoogle Scholar
  49. 49.
    Mitome, N., Ono, S., Suzuki, T., Shimabukuro, K., Muneyuki, E., and Yoshida, M. (2002) Eur. J. Biochem., 269, 53–60.PubMedCrossRefGoogle Scholar
  50. 50.
    Suzuki, T., Murakami, T., Iino, R., Suzuki, J., Ono, S., Shirakihara, Y., and Yoshida, M. (2003) J. Biol. Chem., 278, 46840–46846.PubMedCrossRefGoogle Scholar
  51. 51.
    Penefsky, H. S. (1977) J. Biol. Chem., 252, 2891–2899.PubMedGoogle Scholar
  52. 52.
    Noji, H., Bald, D., Yasuda, R., Itoh, H., Yoshida, M., and Kinosita, K., Jr. (2001) J. Biol. Chem., 276, 25480–25486.PubMedCrossRefGoogle Scholar
  53. 53.
    Hossain, M. D., Furuike, S., Maki, Y., Adachi, K., Ali, M. Y., Huq, M., Itoh, H., Yoshida, M., and Kinosita, K., Jr. (2006) Biophys. J., 90, 4195–4203.PubMedCrossRefGoogle Scholar
  54. 54.
    Shimabukuro, K., Yasuda, R., Muneyuki, E., Hara, K. Y., Kinosita, K., Jr., and Yoshida, M. (2003) Proc. Natl. Acad. Sci. USA, 100, 14731–14736.PubMedCrossRefGoogle Scholar
  55. 55.
    Pullman, M. E., Penefsky, H. S., Datta, A., and Racker, E. (1960) J. Biol. Chem., 235, 3322–3329.PubMedGoogle Scholar
  56. 56.
    Yasuda, R., Noji, H., Yosida, M., Kinosita, K., Jr., and Itoh, H. (2001) Nature, 410, 898–904.PubMedCrossRefGoogle Scholar
  57. 57.
    Ren, H., Bandyopadhyay, S., and Allison, W. S. (2006) Biochemistry, 45, 6222–6230.PubMedCrossRefGoogle Scholar
  58. 58.
    Shimo-Kon, R., Muneyuki, E., Sakai, H., Adachi, K., Yoshida, M., and Kinosita, K., Jr. (2010) Biophys. J., 98, 1227–1236.PubMedCrossRefGoogle Scholar
  59. 59.
    Paik, S. R., Jault, J.-M., and Allison, W. S. (1994) Biochemistry, 33, 126–133.PubMedCrossRefGoogle Scholar
  60. 60.
    Jault, J.-M., Matsui, T., Jault, F. M., Kaibara, C., Muneyuki, E., Yoshida, M., Kagawa, Y., and Allison, W. S. (1995) Biochemistry, 34, 16412–16418.PubMedCrossRefGoogle Scholar
  61. 61.
    Dou, C., Grodsky, N. B., Matsui, T., Yoshida, M., and Allison, W. S. (1997) Biochemistry, 36, 3719–3727.PubMedCrossRefGoogle Scholar
  62. 62.
    Yoshida, M., and Allison, W. S. (1986) J. Biol. Chem., 261, 5714–5721.PubMedGoogle Scholar
  63. 63.
    Milgrom, Y. M., and Boyer, P. D. (1990) Biochim. Biophys. Acta, 1020, 43–48.PubMedCrossRefGoogle Scholar
  64. 64.
    Milgrom, Y. M., and Cross, R. L. (1993) J. Biol. Chem., 268, 23179–23185.PubMedGoogle Scholar
  65. 65.
    Matsui, T., Muneyuki, E., Honda, M., Allison, W. S., Dou, C., and Yoshida, M. (1997) J. Biol. Chem., 272, 8215–8221.PubMedCrossRefGoogle Scholar
  66. 66.
    Vulfson, E. N., Drobinskaya, I. E., Kozlov, I. A., and Murataliev, M. B. (1986) Biol. Membr. (Moscow), 3, 339–351.Google Scholar
  67. 67.
    Jault, J.-M., Dou, C., Grodsky, N. B., Matsui, T., Yoshida, M., and Allison, W. S. (1996) J. Biol. Chem., 271, 28818–28824.PubMedCrossRefGoogle Scholar
  68. 68.
    Sakaki, N., Shimo-kon, R., Adachi, K., Itoh, H., Furuiki, S., Muneyuki, E., Yoshida, M., and Kinosita, K., Jr. (2005) Biophys, J., 88, 2047–2056.CrossRefGoogle Scholar
  69. 69.
    Paik, S. R., Yokoyama, K., Yoshida, M., Ohta, T., Kagawa, Y., and Allison, W. S. (1993) J. Bioenerg. Biomembr., 25, 679–684.PubMedGoogle Scholar
  70. 70.
    Ebel, R. E., and Lardy, H. A. (1975) J. Biol. Chem., 250, 191–196.PubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.Department of Biochemistry and Molecular BiologyState University of New York, Upstate Medical UniversitySyracuseUSA

Personalised recommendations