Biochemistry (Moscow)

, Volume 76, Issue 11, pp 1227–1232 | Cite as

Identification and secondary structure analysis of a keratin-like fibrous protein discovered in ligament of the bivalve Siliqua radiata

  • Zengqiong Huang
  • Gangsheng ZhangEmail author


A novel keratin-like fibrous protein K58 with molecular weight of about 58 kDa was discovered in bivalve Siliqua radiata ligament and identified by amino acid composition and MALDI-TOF-TOF analysis. We found that the protein is composed of cylindrical fibers (∼160 nm in diameter) and contains high glycine (27.4%) and phenylalanine (10.5%) contents. Furthermore, it is homologous to keratin type II cytoskeletal 1, with repeat motifs of SGGG and SYGSGG. FTIR and secondary structure analysis indicate that K58 is composed of 46.2% β-sheet, 33.4% β-turn, 13.1% α-helix, and 4.7% disordered structure. This structure feature is closely related to the superior tensile strength, elasticity, and solvent resistance property of K58. These discoveries provide some evidence for evolution of keratin and fibrous proteins and prompt further studies of ligament fibrous proteins.

Key words

bivalve ligament fibrous protein keratin Siliqua radiata K58 secondary structure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Trueman, E. R. (1950) Q. J. Micro. Sci., 91, 225–234.Google Scholar
  2. 2.
    Sartori, A. F., and Ball, A. D. (2009) J. Mollusc. Stud., 75, 295–304.CrossRefGoogle Scholar
  3. 3.
    Kahler, G. A., Sass, R. L., and Fisher, F. M. (1976) J. Comp. Physiol., 109, 209–220.Google Scholar
  4. 4.
    Beedham, G. E. (1958) Quart. J. Micro. Sci., 99, 341–357.Google Scholar
  5. 5.
    Kelly, R. B., and Rice, R. V. (1967) Science, 155, 208–210.PubMedCrossRefGoogle Scholar
  6. 6.
    Kahler, G. A., Fisher, F. M., and Sass, R. L. (1976) Biol. Bull., 151, 161–181.PubMedCrossRefGoogle Scholar
  7. 7.
    Kikuchi, Y., and Tamiya, N. (1987) Biochem. J., 242, 505–510.PubMedGoogle Scholar
  8. 8.
    Marsh, M., Hamilton, G., and Sass, R. (1978) Calcif. Tiss. Res., 25, 45–51.CrossRefGoogle Scholar
  9. 9.
    Kikuchi, Y., Tsuchikura, O., Hirama, M., and Tamiya, N. (1987) Eur. J. Biochem., 164, 397–402.PubMedCrossRefGoogle Scholar
  10. 10.
    Cao, Q., Wang, Y., and Bayley, H. (1997) Curr. Biol., 7, 677–678.CrossRefGoogle Scholar
  11. 11.
    Bochicchio, B., Pepe, A., and Tamburro, A. M. (2005) Chirality, 17, 346–372.CrossRefGoogle Scholar
  12. 12.
    Bochicchio, B., Oronoz, F. J., Pepe, A., Blanco, M., Sandberg, L. B., and Tamburro, A. M. (2005) Macromol. Biosci., 5, 502–511.PubMedCrossRefGoogle Scholar
  13. 13.
    Zengqiong Huang and Gangsheng Zhang (2011) Micron, 42, 706–711.CrossRefGoogle Scholar
  14. 14.
    Aluigi, A., Zoccola, M., Vineis, C., Tonin, C., Ferrero, F., and Canetti, M. (2007) Int. J. Biol. Macromol., 41, 266–273.PubMedCrossRefGoogle Scholar
  15. 15.
    Mecham, R. P. (2008) Methods, 45, 32–41.PubMedCrossRefGoogle Scholar
  16. 16.
    Park, K. J., Jin, H. H., and Hyun, C. K. (2002) Process. Biochem., 38, 411–418.CrossRefGoogle Scholar
  17. 17.
    Tatham, A. S., and Shewry, P. R. (2003) in Elastomeric Proteins: Structures, Biomechanical Properties, and Biological Roles (Shewry, P. R., Tatham, A. S., and Bailey, A., eds.) Cambridge University Press, New York, pp. 338–340.CrossRefGoogle Scholar
  18. 18.
    Cardamone, J. M. (2010) J. Mol. Struct., 969, 97–105.CrossRefGoogle Scholar
  19. 19.
  20. 20.
    Trueman, E. R. (1953) Q. J. Micro. Sci., 94, 193–202.Google Scholar
  21. 21.
    Morris, R. L., Hoffman, M. P., Obar, R. A., McCafferty, S. S., Gibbons, I. R., Leone, A. D., Cool, J., Allgood, E. L., Musante, A. M., Judkins, K. M., Rossetti, B. J., Rawson, A. P., and Burgess, D. R. (2006) Dev. Biol., 300, 219–237.PubMedCrossRefGoogle Scholar
  22. 22.
    Trueman, E. R. (1949) Proc. Zool. Soc. Lond., 114, 717–742.Google Scholar
  23. 23.
    Trueman, E. R. (1951) Quart. J. Micro. Sci., 92, 129–140.Google Scholar
  24. 24.
    Trueman, E. R. (1954) J. Mollusc. Stud., 30, 160–166.Google Scholar
  25. 25.
    Dong, A., Huang, P., and Caughey, W. S. (1992) Biochemistry, 31, 182–189.PubMedCrossRefGoogle Scholar
  26. 26.
    Movasaghi, Z., Rehman, S., and Rehman, I. (2008) Appl. Spectrosc. Rev., 43, 134–179.CrossRefGoogle Scholar
  27. 27.
    Pelton, J. T., and McLean, L. R. (2000) Anal. Biochem., 277, 167–176.PubMedCrossRefGoogle Scholar
  28. 28.
    Romer, L., and Scheibel, T. (2008) in Molecular Biology Intelligence Unit: Fibrous Proteins (Scheibel, T., ed.) Landes Bioscience Press, Texas, pp. 121–127.Google Scholar
  29. 29.
    Sundaram, S., Deshmukh, V. D., and Raje, S. G. (2010) J. Mar. Biol. Ass. India, 52, 99–101.Google Scholar
  30. 30.
    Meyers, M. A., Chen, P. Y., and Lin, A. Y. M. (2008) Prog. Mater. Sci., 53, 113.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringGuangxi UniversityNanningChina

Personalised recommendations