Advertisement

Biochemistry (Moscow)

, 76:1172 | Cite as

Effect of cholinergic drugs on the activity of basic carboxypeptidases in rat nervous tissue

  • V. B. Solov’evEmail author
  • M. T. Gengin
  • O. V. Solov’eva
  • O. V. Pavlova
  • E. S. Lobzina
Article
  • 47 Downloads

Abstract

Effects of a single administration of cholinergic drugs (arecoline, atropine, nicotine, mecamylamine) on the activity of carboxypeptidase H and of phenylmethylsulfonyl fluoride-inhibited carboxypeptidase, which are involved in metabolism of neuropeptides, were studied in brain parts and the adrenal glands of rats. The enzyme activities were determined fluorimetrically using specific inhibitors and substrates. In the majority of cases the enzyme activities decreased, and this decrease was retained for at least 72 h. Changes in the activities of the studied enzymes depended on the type of cholinergic action, the nervous system part, and the time after the injection. The changes in activities of the studied carboxypeptidases are supposed to be a possible mechanism responsible for changes in the levels of neuropeptides under the influence of high doses of the drugs.

Key words

nervous system carboxypeptidases cholinergic drugs 

Abbreviations

CPH

carboxypeptidase H

FSH

follicle-stimulating hormone

GABA

γ-aminobutyric acid

GEMSA

guanidine ethylmercaptosuccinic acid

GnRF

gonadotropin-releasing factor

LH

luteinizing hormone

PMSF-CP

phenylmethylsulfonyl fluoride-inhibited carboxypeptidase

References

  1. 1.
    Krylov, S. S., Livanov, G. A., Petrov, A. N., Semenov, E. B., Sprints, A. M., and Buchko, V. M. (1999) Clinical Toxicology of Pharmaceutical Preparations. Cholinergic Preparations [in Russian], Lan’ Publishers, St. Petersburg.Google Scholar
  2. 2.
    Mufson, E. J., Counts, S. E., Perez, S. E., and Ginsberg, S. D. (2008) Exp. Revs. Neurotherapy, 8, 1703–1718.CrossRefGoogle Scholar
  3. 3.
    Tenovuo, O. S. (2006) Curr. Drug Therapy, 1, 187–209.CrossRefGoogle Scholar
  4. 4.
    Wessler, I., and Kirkpatrick, C. J. (2008) Br. J. Pharmacol., 154, 1558–1571.PubMedCrossRefGoogle Scholar
  5. 5.
    Andersson, K., Eneroth, P., Fuxe, K., and Harfstrand, A. (1998) Naunyn Schmiedebergs Arch. Pharmacol., 337, 131–139.Google Scholar
  6. 6.
    Chen, H., Vlahos, R., Bozinovski, S., Jones, J., Anderson, G. P., and Morris, M. J. (2005) Neuropsychopharmacology, 30, 713–719.PubMedGoogle Scholar
  7. 7.
    Gower, W. R., Dietz, J. R., McCuen, R. W., Fabri, P. J., Lerner, E. A., and Schubert, M. L. (2003) Am. J. Physiol. Gastrointest. Liver Physiol., 284, 68–74.Google Scholar
  8. 8.
    Hortnagl, H., Sperk, G., Sobal, G., and Maas, D. (1990) J. Neurochem., 54, 1608–1613.PubMedCrossRefGoogle Scholar
  9. 9.
    Lauand, F., Ruginsk, S. G., Rodrigues, H. L. P., Reis, W. L., de Castro, M., Elias, L. L. K., and Antunes-Rodrigues, J. (2007) Neurosciences, 147, 247–257.CrossRefGoogle Scholar
  10. 10.
    Pitkanen, A., Beal, M. F., Sirvio, J., Swartz, K. J., Mannisto, P. T., and Riekkinen, P. J. (1989) Neuropeptides, 14, 197–207.PubMedCrossRefGoogle Scholar
  11. 11.
    Shi, L., Mao, C., Zeng, Zhang, Y., and Xu, Z. (2008) BMC Devel. Biol., 95, 1558–1571.Google Scholar
  12. 12.
    Roshchina, I. F., Kolykhalov, I. V., and Selezneva, N. D. (1999) Zh. Nevrol. Psikhiatr., 99, 43–46.Google Scholar
  13. 13.
    Wessler, I., Bittinger, F., Kamin, W., Zepp, F., Meyer, E., Schad, A., and Kirkpatrick, C. J. (2007) Life Sci., 30, 2253–2258.CrossRefGoogle Scholar
  14. 14.
    Caulfield, M. P., and Nigel, J. M. (1998) Pharm. Rev., 50, 279–290.PubMedGoogle Scholar
  15. 15.
    Gomazkov, O. A. (1995) Physiologically Active Peptides [in Russian], IPGM Publisher, Moscow.Google Scholar
  16. 16.
    Hoftberger, R., Kunze, M., Voigtlander, T., Unterberger, U., and Regelsberger, G. (2010) Endocrinology, 151, 4801–4810.PubMedCrossRefGoogle Scholar
  17. 17.
    Muller, L., Cameron, A., Fortenberry, Y., Apletalina, E. V., and Lindberg, I. (2000) J. Biol. Chem., 275, 39213–39222.PubMedCrossRefGoogle Scholar
  18. 18.
    Vernigora, A. N., and Gengin, M. T. (1996) Biochemistry (Moscow), 61, 555–564.Google Scholar
  19. 19.
    Gengin, M. T., and Vernigora, A. N. (1994) Ukr. Biokhim. Zh., 66, 3–17.PubMedGoogle Scholar
  20. 20.
    Vernigora, A. N., Gengin, M. T., Mukhina, E. S., and Mikhailova, O. E. (2002) Ukr. Biokhim. Zh., 74, 124–125.PubMedGoogle Scholar
  21. 21.
    Fricker, L. D., and Snyder, S. H. (1983) J. Biol. Chem., 258, 10950–10955.PubMedGoogle Scholar
  22. 22.
    Lowry, O. H., Rosebrought, N. J., Farr, A. G., and Randall, R. J. (1951) J. Biol. Chem., 193, 265–275.PubMedGoogle Scholar
  23. 23.
    Lakin, G. F. (1990) Biometry [in Russian], Vysshaya Shkola, Moscow.Google Scholar
  24. 24.
    Pritchard, L. E., and White, A. (2008) Endocrinology, 148, 4201–4207.CrossRefGoogle Scholar
  25. 25.
    Rodriguez, C., Brayton, K. A., Brownstein, M., and Dixon, J. E. (1989) J. Biol. Chem., 264, 5988–5995.PubMedGoogle Scholar
  26. 26.
    Judd, A. M., and Hedge, G. A. (2011) Endocrinology, 113, 706–710.CrossRefGoogle Scholar
  27. 27.
    Doi, T., Ueda, Y., Nagatomo, K., and Willmore, L. J. (2009) Neurochem. Res., 34, 1324–1331.PubMedCrossRefGoogle Scholar
  28. 28.
    Tirassa, P., Costa, N., and Aloe, L. (2005) Neuropharmacology, 48, 732–742.PubMedCrossRefGoogle Scholar
  29. 29.
    Vernigora, A. N., Gengin, M. T., Shchetinina, N. V., and Spiridonov, D. A. (1999) Ukr. Biokhim. Zh., 71, 91–92.PubMedGoogle Scholar
  30. 30.
    Song, L. X., and Fricker, L. (1995) J. Neurochem., 65, 444–453.PubMedCrossRefGoogle Scholar
  31. 31.
    Nalamachu, S. R., Song, L. X., and Fricker, L. D. (1994) J. Biol. Chem., 269, 11192–11195.PubMedGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • V. B. Solov’ev
    • 1
    Email author
  • M. T. Gengin
    • 1
  • O. V. Solov’eva
    • 1
  • O. V. Pavlova
    • 1
  • E. S. Lobzina
    • 1
  1. 1.Department of BiochemistryBelinsky Penza State Pedagogical UniversityPenzaRussia

Personalised recommendations