Biochemistry (Moscow)

, 76:1164 | Cite as

Methylglyoxal induces mitochondria-dependent apoptosis in sarcoma

Article

Abstract

In the preceding paper (A. Ghosh et al. (2011) Biochemistry (Moscow), 76, 1051–1060), using several comparable tissue materials, it has been convincingly demonstrated that methylglyoxal, a normal metabolite, inhibits mitochondrial complex I of specifically malignant cells. This suggests a distinct alteration of complex I, a highly important enzyme for energy (ATP) production, in malignancy. The present paper shows that as a consequence of this inhibition mitochondrial membrane potential is drastically reduced in sarcoma tissue but not in normal skeletal muscle. This was estimated spectrofluorimetrically using the dye rhodamine 123. As a consequence, cytochrome c was released from the sarcoma mitochondria as evidenced by Western blot analysis. Moreover, on treatment with methylglyoxal membrane potential collapse of sarcoma 180 cells was also indicated by fluorescence-activated cell sorter analysis. Atomic force microscopic study demonstrated gross structural alteration specifically of tumor mitochondria on methylglyoxal treatment. All these studies suggest that methylglyoxal might initiate an apoptotic event in malignant cells.

Key words

sarcoma methylglyoxal membrane potential atomic force microscopy cytochrome 

Abbreviations

AFM

atomic force microscopy

FACS

fluorescence-activated cell sorter

JC-1

5,5′,6,6′-tetrachloro-1,1′,3,3′-tetraethyl benzimidazolyl carbocyanine iodide

3MC

3-methyl cholanthrene

References

  1. 1.
    Talukdar, D., Ray, S., Ray, M., and Das, S. (2008) Drug Metab. Drug Interact., 23, 175–210.CrossRefGoogle Scholar
  2. 2.
    Kalapos, M. P. (2008) Drug Metab. Drug Interact., 23, 69–91.CrossRefGoogle Scholar
  3. 3.
    Talukdar, D., Chaudhuri, B. S., Ray, M., and Ray, S. (2009) Biochemistry (Moscow), 74, 1059–1069.CrossRefGoogle Scholar
  4. 4.
    Szent-Györgyi, A. (1979) Ciba Found. Symp., 67, 3–18.Google Scholar
  5. 5.
    Ghosh, A., Bera, S., Ghosal, S., Ray, S., Basu, A., and Ray, M. (2011) Biochemistry (Moscow), 76, 1051–1060.Google Scholar
  6. 6.
    Wong, T. W. L., Yu, H. Y., Kong, S. K., Fung, K. P., and Kwok, T. T. (2000) Life Scie., 67, 1111–1118.CrossRefGoogle Scholar
  7. 7.
    El-Mir, M. Y., Nogueira, V., Fontaine, E., Averet, N., Rigoulet, M., and Leverve, X. (2000) J. Biol. Chem., 275, 223–228.PubMedCrossRefGoogle Scholar
  8. 8.
    Patra, S., Bera, S., Roy, S. S., Ghoshal, S., Ray, S., Basu, A., Schlattner, U., Wallimann, T., and Ray, M. (2008) FEBS J., 275, 3236–3247.PubMedCrossRefGoogle Scholar
  9. 9.
    Moreadith, R. W., and Fiskum, G. (1984) Anal. Biochem., 137, 360–367.PubMedCrossRefGoogle Scholar
  10. 10.
    Baracca, A., Sgarbi, G., Solaini, G., and Lenaz, G. (2003) Biochim. Biophys. Acta, 1606, 137–146.PubMedCrossRefGoogle Scholar
  11. 11.
    Reers, M., Smiley, S. T., Mottola-Hartshorn, C., Chen, A., Lin, M., and Chen, L. B. (1995) Methods Enzymol., 260, 406–417.PubMedCrossRefGoogle Scholar
  12. 12.
    Layton, B. E., Sastry, A. M., Lastoskie, C. M., Philbert, M. A., Miller, T. J., Sullivan, K. A., Feldman, E. L., and Wang, C. W. (2004) BioTechniques, 37, 564–573.PubMedGoogle Scholar
  13. 13.
    Layne, E. (1957) Methods Enzymol., 3, 447–454.CrossRefGoogle Scholar
  14. 14.
    Du, J., Suzuki, H., Nagase, F., Akhand, A. A., Yokoyama, T., Miyata, T., Kurokawa, K., and Nakashima, I. (2000) J. Cell. Biochem., 77, 333–344.PubMedCrossRefGoogle Scholar
  15. 15.
    Inarrea, P., Moini, H., Han, D., Rettorl, D., Aguilo, I., Alava, M. A., Iturralde, M., and Cadenas, E. (2007) Biochem. J., 405, 173–179.PubMedGoogle Scholar
  16. 16.
    Mancini, M., Anderson, B. O., Caldwell, E., Sedginasab, M., Paty, P. B., and Hochenbery, D. M. (1997) J. Cell. Biol., 138, 449–469.PubMedCrossRefGoogle Scholar
  17. 17.
    Pritchard, D. E., Singh, J., Carlisle, D. L., and Patierno, S. R. (2000) Carcinogenesis, 21, 2027–2033.PubMedCrossRefGoogle Scholar
  18. 18.
    Speer, O., Morkunaite-Haimi, S., Liobikas, J., Franck, M., Hensbo, L., Linder, M. D., Kinnunen, P. K., Wallimann, T., and Eriksson, O. (2003) J. Biol. Chem., 278, 34757–34763.PubMedCrossRefGoogle Scholar
  19. 19.
    Banerjee, T., and Mukhopadhyay, R. (2008) Biochem. Biophys. Res. Commun., 374, 264–268.PubMedCrossRefGoogle Scholar
  20. 20.
    Kang, Y., Edwards, L. G., and Thornalley, P. J. (1996) Leuk. Res., 20, 397–405.PubMedCrossRefGoogle Scholar
  21. 21.
    Chan, W. H., Wu, H. J., and Hsuuw, Y. D. (2005) Ann. N. Y. Acad. Sci., 1042, 372–378.PubMedCrossRefGoogle Scholar
  22. 22.
    Milanesa, D. M., Choudhury, M. S., Mallouh, C., Tazaki, H., and Konno, S. (2000) Eur. Urol., 37, 728–734.PubMedCrossRefGoogle Scholar
  23. 23.
    Ly, J. D., Grubb, D. R., and Lawen, A. (2003) Apoptosis, 8, 115–128.PubMedCrossRefGoogle Scholar
  24. 24.
    Buttke, T. M., and Sandstrom, P. A. (1994) Immunol. Today, 15, 7–10.PubMedCrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • A. Ghosh
    • 1
  • S. Bera
    • 1
  • S. Ray
    • 2
  • T. Banerjee
    • 1
  • M. Ray
    • 1
  1. 1.Department of Biological ChemistryIndian Association for the Cultivation of ScienceJadavpur, KolkataIndia
  2. 2.KolkataIndia

Personalised recommendations