Advertisement

Biochemistry (Moscow)

, 76:1155 | Cite as

Self-assembly of soluble unlinked and cross-linked fibrin oligomers

  • M. A. RosenfeldEmail author
  • V. B. Leonova
  • M. I. Biryukova
  • M. V. Vasileva
Article

Abstract

Self-assembly of soluble unlinked and cross-linked fibrin oligomers formed from desA-fibrin monomer under the influence of factor XIIIa was studied in the presence of non-denaturing urea concentrations. By methods of elastic and dynamic light scattering combined with analytical ultracentrifugation, desA-fibrin oligomers formed in both the presence and absence of the factor XIIIa were shown to be ensembles consisting of soluble rod-like double-stranded protofibrils with diverse weight and size. Unlinked and cross-linked soluble double-stranded protofibrils can reach the length of 350–450 nm. The structure of soluble covalently-linked protofibrils is stabilized by isopeptide γ-dimers. Electrophoretic data indicate a complete absence of isopeptide bonds between α-chains of desA-fibrin molecules. The molecular mechanism of formation of soluble rod-like fibrin structures and specific features of its covalent stabilization under the influence of factor XIIIa are discussed.

Key words

soluble fibrin double-stranded protofibrils factor XIIIa γ-dimers α-polymers 

References

  1. 1.
    Mosesson, M. W. (2005) J. Thromb. Haemost., 3, 1894–1904.PubMedCrossRefGoogle Scholar
  2. 2.
    Blomback, B. (1996) Thromb. Res., 83, 1–75.PubMedCrossRefGoogle Scholar
  3. 3.
    Weisel, J. W. (2005) Adv. Protein. Chem., 70, 247–299.PubMedCrossRefGoogle Scholar
  4. 4.
    Marguerie, G., and Stuhrmann, H. B. (1976) J. Mol. Biol., 102, 143–156.PubMedCrossRefGoogle Scholar
  5. 5.
    Medved, L., and Weisel, W. (2009) J. Thromb. Haemost., 7, 355–359.PubMedCrossRefGoogle Scholar
  6. 6.
    Spraggon, G., Everse, S. J., and Doolittle, R. F. (1997) Nature, 389, 455–462.PubMedCrossRefGoogle Scholar
  7. 7.
    Madrazo, J., Brown, J. H., Livinovich, S., Dominguez, R., Yakovlev, S., Medved, L., and Cohen, C. (2001) Proc. Natl. Acad. Sci. USA, 98, 11967–11972.PubMedCrossRefGoogle Scholar
  8. 8.
    Brown, J. H., Volkman, N., Jun, G., Henschen-Edman, A. H., and Cohen, C. (2001) Proc. Natl. Acad. Sci. USA, 97, 85–90.CrossRefGoogle Scholar
  9. 9.
    Yang, Z., Kollman, J. K., Pandi, L., and Doolittle, R. F. (2001) Biochemistry, 40, 12515–12523.PubMedCrossRefGoogle Scholar
  10. 10.
    Budzynski, A. Z., Olexa, S. A., and Pandya, B. V. (1983) Ann. N. Y. Acad. Sci., 408, 301–314.PubMedCrossRefGoogle Scholar
  11. 11.
    Yee, V. C., Pratt, K. P., Cote, H., Trong, I. L., Chung, D. W., Davie, E. W., Stencamp, R. E., and Teller, D. C. (1997) Structure, 5, 125–138.PubMedCrossRefGoogle Scholar
  12. 12.
    Pratt, K. P., Cote, H., Chung, D. W., Stencamp, R. E., and Davie, E. W. (1997) Proc. Natl. Acad. Sci. USA, 94, 71–81.CrossRefGoogle Scholar
  13. 13.
    Doolittle, R. F. (1984) Annu. Rev. Biochem., 53, 195–229.PubMedCrossRefGoogle Scholar
  14. 14.
    Blomback, B., Hessel, B., Hogg, D., and Therkildsen, L. (1978) Nature, 257, 501–505.CrossRefGoogle Scholar
  15. 15.
    Mihalyi, E. (1988) Biochemistry, 27, 967–976.PubMedCrossRefGoogle Scholar
  16. 16.
    Rosenfeld, M. A., Gershkovich, K. B., Kuznetsov, D. V., Meshkov, B. B., and Gontar, I. D. (1986) Mol. Biol., 20, 1098–1110.Google Scholar
  17. 17.
    Rosenfeld, M. A., Gershkovich, K. B., and Kuznetsov, D. V. (1988) Mol. Biol., 22, 86–93.Google Scholar
  18. 18.
    Blomback, B., and Laurent, T. C. (1958) Ark. Kemi., 2, 137–146.Google Scholar
  19. 19.
    Lawrie, J. S., Ross, J., and Kemp, G. G. (1979) Biochem. Soc. Trans., 7, 693–694.PubMedGoogle Scholar
  20. 20.
    Lorand, L., Gredo, R. B., and Janus, T. J. (1981) Methods Enzymol., 809, 333–341.CrossRefGoogle Scholar
  21. 21.
    Rosenfeld, M., and Vasileva, M. V. (1991) Biomed. Sci., 2, 155–161.Google Scholar
  22. 22.
    Svedsen, L., Blomback, B., Blomback, M., and Olsson, P. J. (1972) Tromb. Res., 3, 267–278.CrossRefGoogle Scholar
  23. 23.
    Rosenfeld, M. A., Leonova, V. B., Shchegolikhin, A. N., Razumovskii, S. D., Konstantinova, M. L., Bychkova, A. V., and Kovarskii, A. L. (2010) Biochemistry (Moscow), 75, 1285–1293.CrossRefGoogle Scholar
  24. 24.
    Shulman, S. (1953) J. Am. Chem. Soc., 75, 5846–5852.CrossRefGoogle Scholar
  25. 25.
    Casassa, E. F. (1955) J. Chem. Phys., 23, 596–597.CrossRefGoogle Scholar
  26. 26.
    Lugovskoi, E. V., Gritsenko, P. G., and Komissarenko, S. V. (2009) Bioorg. Khim., 35, 437–456.PubMedGoogle Scholar
  27. 27.
    Hogg, D. H., and Blomback, B. (1978) Thromb. Res., 12, 953–964.PubMedCrossRefGoogle Scholar
  28. 28.
    Yang, Z., Mochalkin, I., and Doolittle, R. F. (2000) Proc. Natl. Acad. Sci. USA, 97, 14156–14161.PubMedCrossRefGoogle Scholar
  29. 29.
    Weisel, J. W., Veclich, Y., and Gorkun, O. (1993) J. Mol. Biol., 232, 285–297.PubMedCrossRefGoogle Scholar
  30. 30.
    Tsvetkov, V. N., Eskin, V. E., and Frenkel, S. Ya. (1964) Structure of Macromolecules in Solutions [in Russian], Nauka, Moscow, pp. 93–480.Google Scholar
  31. 31.
    Weisel, J. W., Francis, C. W., Nagaswani, C., and Marder, V. J. (1993) J. Biol. Chem., 268, 26618–26624.PubMedGoogle Scholar
  32. 32.
    Veklich, Y., Ang, E. K., Lorand, L., and Weisel, J. W. (1998) Proc. Natl. Acad. Sci. USA, 95, 1438–1442.PubMedCrossRefGoogle Scholar
  33. 33.
    Doolittle, R. F. (2003) J. Thromb. Haemost., 1, 1559–1565.PubMedCrossRefGoogle Scholar
  34. 34.
    Weisel, J. W. (2004) J. Thromb. Haemost., 2, 1467–1469.PubMedCrossRefGoogle Scholar
  35. 35.
    Mosesson, M. W. (2004) J. Thromb. Haemost., 2, 388–393.PubMedCrossRefGoogle Scholar
  36. 36.
    Krakow, Enders, G. F., Siegel, B. M., and Scheraga, H. A. (1972) J. Mol. Biol., 71, 95–103.PubMedCrossRefGoogle Scholar
  37. 37.
    Williams, R. C. (1983) Ann. N. Y. Acad. Sci., 408, 180–193.PubMedCrossRefGoogle Scholar
  38. 38.
    Gron, B., Filion-Myklebust, C., Bennick, A., Nieuwenhuizen, W., Matsueda, G. R., and Brosstad, F. (1992) Blood Coagul. Fibrinol., 3, 731–736.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • M. A. Rosenfeld
    • 1
    Email author
  • V. B. Leonova
    • 1
  • M. I. Biryukova
    • 1
  • M. V. Vasileva
    • 1
  1. 1.Emanuel Institute of Biochemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations