Advertisement

Biochemistry (Moscow)

, 76:1120 | Cite as

Programmed cell death in plants: Protective effect of mitochondrial-targeted quinones

  • L. A. Vasil’ev
  • E. V. Dzyubinskaya
  • D. B. Kiselevsky
  • A. A. Shestak
  • V. D. SamuilovEmail author
Article

Abstract

Ubiquinone or plastoquinone covalently linked to synthetic decyltriphenylphosphonium (DTPP+) or rhodamine cations prevent programmed cell death (PCD) in pea leaf epidermis induced by chitosan or CN. PCD was monitored by recording the destruction of cell nuclei. CN induced the destruction of nuclei in both epidermal cells (EC) and guard cells (GC), whereas chitosan destroyed nuclei in EC not in GC. The half-maximum concentrations for the protective effects of the quinone derivatives were within the pico- and nanomolar range. The protective effect of the quinones was removed by a protonophoric uncoupler and reduced by tetraphenylphosphonium cations. CN-Induced PCD was accelerated by the tested quinone derivatives at concentrations above 10−8–10−7 M. Unlike plastoquinone linked to the rhodamine cation (SkQR1), DTPP+ derivatives of quinones suppressed menadione-induced H2O2 generation in the cells. The CN-induced destruction of GC nuclei was prevented by DTPP+ derivatives in the dark not in the light. SkQR1 inhibited this process both in the dark and in the light, and its effect in the light was similar to that of rhodamine 6G. The data on the protective effect of cationic quinone derivatives indicate that mitochondria are involved in PCD in plants.

Key words

programmed cell death mitochondrial-targeted quinones mitochondria chitosan reactive oxygen species pea 

Abbreviations

te]BQ

p-benzoquinone

CCCP

carbonyl cyanide m-chlorophenylhydrazone

DAPI

4′,6-diamidino-2-phenylindole dihydrochloride

DCF

2′,7′-dichlorofluorescein

DCMU

3-(3′,4′-dichlorophenyl)-1,1-dimethylurea

DTPP+

decyltriphenylphosphonium cation

EC

basic epidermal cells

GC

stoma guard cells

MitoQ

10-(6′-ubiquinonyl)decyltriphenylphosphonium

NBT

nitroblue tetrazolium

PCD

programmed cell death

ROS

reactive oxygen species

SkQ1

10-(6′-plastoquinonyl)decyltriphenylphosphonium

SkQ3

10-(6′-methylplastoquinonyl)decyltriphenylphosphonium

SkQR1

10-(plastoquinonyl)decylrhodamine 19

TPP+

tetraphenylphosphonium cation

Δyy

transmembrane electrical potential difference

References

  1. 1.
    Samuilov, V. D., Oleskin, A. V., and Lagunova, E. M. (2000) Biochemistry (Moscow), 65, 873–887.Google Scholar
  2. 2.
    Van Loo, G., Saelens, X., van Gurp, M., MacFarlane, M., Martin, S. J., and Vandenabeele, P. (2002) Cell Death Differ., 9, 1031–1042.PubMedCrossRefGoogle Scholar
  3. 3.
    Newmeyer, D. D., and Ferguson-Viller, S. (2003) Cell, 112, 481–490.PubMedCrossRefGoogle Scholar
  4. 4.
    Danial, N. N., and Korsmeyer, S. J. (2004) Cell, 116, 205–219.PubMedCrossRefGoogle Scholar
  5. 5.
    Skulachev, V. P. (2006) Apoptosis, 11, 473–485.PubMedCrossRefGoogle Scholar
  6. 6.
    Balk, J., Leaver, C. J., and McCabe, P. F. (1999) FEBS Lett., 463, 151–154.PubMedCrossRefGoogle Scholar
  7. 7.
    Sun, Y.-L., Zhao, Y., Hong, X., and Zhai, Z.-H. (1999) FEBS Lett., 462, 317–321.PubMedCrossRefGoogle Scholar
  8. 8.
    Lam, E., Kato, N., and Lawton, M. (2001) Nature, 411, 848–853.PubMedCrossRefGoogle Scholar
  9. 9.
    Curtis, M. J., and Wolpert, T. J. (2002) Plant J., 29, 295–312.PubMedCrossRefGoogle Scholar
  10. 10.
    Krause, M. J., and Durner, J. (2004) Mol. Plant Microbe Interact., 17, 131–139.PubMedCrossRefGoogle Scholar
  11. 11.
    Yao, N., Eisfelder, B. J., Marvin, J., and Greenberg, J. T. (2004) Plant J., 40, 596–610.PubMedCrossRefGoogle Scholar
  12. 12.
    Samuilov, V. D., Lagunova, E. M., Beshta, O. E., and Kitashov, A. V. (2000) Biochemistry (Moscow), 65, 696–702.Google Scholar
  13. 13.
    Samuilov, V. D., Lagunova, E. M., Dzyubinskaya, E. V., Izyumov, D. S., Kiselevsky, D. B., and Makarova, Ya. V. (2002) Biochemistry (Moscow), 67, 627–634.CrossRefGoogle Scholar
  14. 14.
    Samuilov, V. D., Lagunova, E. M., Kiselevsky, D. B., Dzyubinskaya, E. V., Makarova, Ya. V., and Gusev, M. V. (2003) Biosci. Rep., 23, 103–117.PubMedCrossRefGoogle Scholar
  15. 15.
    Samuilov, V. D., Lagunova, E. M., Gostimsky, S. A., Timofeev, K. N., and Gusev, M. V. (2003) Biochemistry (Moscow), 68, 912–917.CrossRefGoogle Scholar
  16. 16.
    Bakeeva, L. E., Dzyubinskaya, E. V., and Samuilov, V. D. (2005) Biochemistry (Moscow), 70, 972–979.CrossRefGoogle Scholar
  17. 17.
    Dzyubinskaya, E. V., Kiselevsky, D. B., Lobysheva, N. V., Shestak, A. A., and Samuilov, V. D. (2006) Biochemistry (Moscow), 71, 1120–1127.CrossRefGoogle Scholar
  18. 18.
    Dzyubinskaya, E. V., Kiselevsky, D. B., Bakeeva, L. E., and Samuilov, V. D. (2006) Biochemistry (Moscow), 71, 395–405.CrossRefGoogle Scholar
  19. 19.
    Boller, T. (1995) Annu. Rev. Plant Physiol. Plant Mol. Biol., 46, 189–214.CrossRefGoogle Scholar
  20. 20.
    Dangl, J. L., and Jones, J. D. G. (2001) Nature, 441, 826–833.CrossRefGoogle Scholar
  21. 21.
    Kaku, H., Nishizawa, Y., Ishii-Minami, N., Akimoto-Tomiyama, C., Dohmae, N., Takio, K., Minami, E., and Shibuya, N. (2006) Proc. Natl. Acad. Sci. USA, 103, 11086–11091.PubMedCrossRefGoogle Scholar
  22. 22.
    Zuppini, A., Baldan, B., Millioni, R., Favaron, F., Navazio, L., and Mariani, P. (2003) New Phytol., 161, 557–568.CrossRefGoogle Scholar
  23. 23.
    Pospieszny, H., Chirkov, S. N., and Atabekov, I. G. (1991) Plant Sci., 79, 63–68.CrossRefGoogle Scholar
  24. 24.
    Iriti, M., Sironi, M., Gomarasca, S., Casazza, A. P., Soave, C., and Faoro, F. (2006) Plant Physiol. Biochem., 44, 893–900.PubMedCrossRefGoogle Scholar
  25. 25.
    Tada, Y., Hata, S., Takata, Y., Nakayashiki, H., Tosa, Y., and Mayama, S. (2001) Mol. Plant-Microbe Interact., 14, 477–486.PubMedCrossRefGoogle Scholar
  26. 26.
    Vasil’ev, L. A., Dzyubinskaya, E. V., Zinovkin, R. A., Kiselevsky, D. B., Lobysheva, N. V., and Samuilov, V. D. (2009) Biochemistry (Moscow), 74, 1035–1043.CrossRefGoogle Scholar
  27. 27.
    Liberman, E. A., Topali, V. P., Tsofina, L. M., Jasaitis, A. A., and Skulachev, V. P. (1969) Nature, 222, 1076–1078.PubMedCrossRefGoogle Scholar
  28. 28.
    Liberman, E. A., and Skulachev, V. P. (1970) Biochim. Biophys. Acta, 216, 30–42.PubMedCrossRefGoogle Scholar
  29. 29.
    Hirsch, R. E., Lewis, B. D., Spalding, E. P., and Sussman, M. R. (1998) Science, 280, 918–921.PubMedCrossRefGoogle Scholar
  30. 30.
    Fisher, D. B. (2000) in Biochemistry and Molecular Biology of Plants (Buchanan, B. B., Gruissem, W., and Joner, R. L., eds.) 1st Edn., American Society of Plant Physiologists, Rockville, MD, pp. 730–784.Google Scholar
  31. 31.
    Palmgren, M. G. (2001) Annu. Rev. Plant Physiol. Plant Mol. Biol., 52, 817–845.PubMedCrossRefGoogle Scholar
  32. 32.
    Sondergaard, T. E., Schulz, A., and Palmgren, M. G. (2004) Plant Physiol., 136, 2475–2482.PubMedCrossRefGoogle Scholar
  33. 33.
    Kelso, G. F., Porteous, C. M., Coulter, C. V., Hughes, G., Porteus, W. K., Ledgerwood, E. C., Smith, R. A. J., and Murphy, M. P. (2001) J. Biol. Chem., 276, 4588–4596.PubMedCrossRefGoogle Scholar
  34. 34.
    James, A. M., Cocheme, H. M., Smith, R. A. J., and Murphy, M. P. (2005) J. Biol. Chem., 280, 21295–21312.PubMedCrossRefGoogle Scholar
  35. 35.
    Dhanasekaran, A., Kotamraju, S., Kalivendi, S. V., Matsunaga, T., Shang, T., Keszler, A., Joseph, J., and Kalyanaraman, B. (2004) J. Biol. Chem., 279, 37575–37587.PubMedCrossRefGoogle Scholar
  36. 36.
    Skulachev, V. P. (2007) Biochemistry (Moscow), 72, 1385–1396.CrossRefGoogle Scholar
  37. 37.
    Antonenko, Yu. N., et al. (2008) Biochemistry (Moscow), 73, 1273–1287.CrossRefGoogle Scholar
  38. 38.
    Bakeeva, L. E., et al. (2008) Biochemistry (Moscow), 73, 1288–1299.CrossRefGoogle Scholar
  39. 39.
    Agapova, L. S., et al. (2008) Biochemistry (Moscow), 73, 1300–1316.CrossRefGoogle Scholar
  40. 40.
    Neroev, V. V., et al. (2008) Biochemistry (Moscow), 73, 1317–1328.CrossRefGoogle Scholar
  41. 41.
    Anisimov, V. N., et al. (2008) Biochemistry (Moscow), 73, 1329–1342.CrossRefGoogle Scholar
  42. 42.
    Hideg, E., Barta, C., Kalai, T., Vass, I., Hideg, K., and Asada, K. (2002) Plant Cell Physiol., 43, 1154–1164.PubMedCrossRefGoogle Scholar
  43. 43.
    LeBel, C. P., Ischiropoulos, H., and Bondy, S. C. (1992) Chem. Res. Toxicol., 5, 227–231.PubMedCrossRefGoogle Scholar
  44. 44.
    Samuilov, V. D., Kiselevsky, D. B., Sinitsyn, S. V., Shestak, A. A., Lagunova, E. M., and Nesov, A. V. (2006) Biochemistry (Moscow), 71, 384–394.CrossRefGoogle Scholar
  45. 45.
    Samuilov, V. D., Kiselevsky, D. B., Shestak, A. A., Nesov, A., and Vasil’ev, L. V. (2008) Biochemistry (Moscow), 73, 1076–1084.CrossRefGoogle Scholar
  46. 46.
    Melotto, M., Uderwood, W., Koczan, J., Nomura, K., and He, S. Y. (2006) Cell, 126, 969–980.PubMedCrossRefGoogle Scholar
  47. 47.
    Hauska, G. (1977) in Encyclopedia of Plant Physiology (Trebst, A., and Avron, M., eds.) Vol. 5, Springer-Verlag, Berlin, pp. 253–265.Google Scholar
  48. 48.
    Samuilov, V. D., Barsky, E. L., and Kitashov, A. V. (1997) Biochemistry (Moscow), 62, 909–913.Google Scholar
  49. 49.
    Cadenas, E., Boveris, A., Ragan, C. I., and Stoppani, A. O. (1977) Arch. Biochem. Biophys., 180, 248–257.PubMedCrossRefGoogle Scholar
  50. 50.
    Kolesova, G. M., Karnaukhova, L. S., and Yaguzhinsky, L. S. (1991) Biokhimiya, 56, 1779–1786.Google Scholar
  51. 51.
    Yamashoji, S., Ikeda, T., and Yamashoji, K. (1991) Biochim. Biophys. Acta, 1059, 99–105.PubMedCrossRefGoogle Scholar
  52. 52.
    Zorov, D. B., Filburn, C. R., Klotz, L.-O., Zweier, J. J., and Sollot, S. J. (2000) J. Exp. Med., 192, 1001–1014.PubMedCrossRefGoogle Scholar
  53. 53.
    Li, W.-G., Miller, F. J., Zhang, H. J., Spitz, D. R., Oberley, L. W., and Weintraub, N. L. (2001) J. Biol. Chem., 276, 29251–29256.PubMedCrossRefGoogle Scholar
  54. 54.
    Sherstnev, M. P., Atanaev, T. B., and Vladimirov, Yu. A. (1989) Biofizika, 34, 684–687.PubMedGoogle Scholar
  55. 55.
    Shea, C. R., Chen, N., Wimberly, J., and Hasan, T. (1989) Cancer Res., 49, 3961–3965.PubMedGoogle Scholar
  56. 56.
    Ogata, M., Inanami, O., Nakajima, M., Nakajima, T., Hiraoka, W., and Kuwabara, M. (2003) Photochem. Photobiol., 78, 241–247.PubMedCrossRefGoogle Scholar
  57. 57.
    Petrat, F., Pindiur, S., Kirsch, M., and de Groot, H. (2003) J. Biol. Chem., 278, 3298–3307.PubMedCrossRefGoogle Scholar
  58. 58.
    Okada, K., Ikeuchi, M., Yamamoto, N., Ono, T., and Miyao, M. (1996) Biochim. Biophys. Acta, 1274, 73–79.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2011

Authors and Affiliations

  • L. A. Vasil’ev
    • 1
  • E. V. Dzyubinskaya
    • 1
  • D. B. Kiselevsky
    • 1
  • A. A. Shestak
    • 1
  • V. D. Samuilov
    • 1
    Email author
  1. 1.Faculty of BiologyLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations